inhibition
Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism
Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Decoding ketamine: Neurobiological mechanisms underlying its rapid antidepressant efficacy
Unlike traditional monoamine-based antidepressants that require weeks to exert effects, ketamine alleviates depression within hours, though its clinical use is limited by side effects. While ketamine was initially thought to work primarily through NMDA receptor (NMDAR) inhibition, our research reveals a more complex mechanism. We demonstrate that NMDAR inhibition alone cannot explain ketamine's sustained antidepressant effects, as other NMDAR antagonists like MK-801 lack similar efficacy. Instead, the (2R,6R)-hydroxynorketamine (HNK) metabolite appears critical, exhibiting antidepressant effects without ketamine's side effects. Paradoxically, our findings suggest an inverted U-shaped dose-response relationship where excessive NMDAR inhibition may actually impede antidepressant efficacy, while some level of NMDAR activation is necessary. The antidepressant actions of ketamine and (2R,6R)-HNK require AMPA receptor activation, leading to synaptic potentiation and upregulation of AMPA receptor subunits GluA1 and GluA2. Furthermore, NMDAR subunit GluN2A appears necessary and possibly sufficient for these effects. This research establishes NMDAR-GluN2A activation as a common downstream effector for rapid-acting antidepressants, regardless of their initial targets, offering promising directions for developing next-generation antidepressants with improved efficacy and reduced side effects.
Impact of High Fat Diet on Central Cardiac Circuits: When The Wanderer is Lost
Cardiac vagal motor drive originates in the brainstem's cardiac vagal motor neurons (CVNs). Despite well-established cardioinhibitory functions in health, our understanding of CVNs in disease is limited. There is a clear connection of cardiovascular regulation with metabolic and energy expenditure systems. Using high fat diet as a model, this talk will explore how metabolic dysfunction impacts the regulation of cardiac tissue through robust inhibition of CVNs. Specifically, it will present an often overlooked modality of inhibition, tonic gamma-aminobuytric acid (GABA) A-type neurotransmission using an array of techniques from single cell patch clamp electrophysiology to transgenic in vivo whole animal physiology. It also will highlight a unique interaction with the delta isoform of protein kinase C to facilitate GABA A-type receptor expression.
Inhibition in the retina
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
Executive functions in the brain of deaf individuals – sensory and language effects
Executive functions are cognitive processes that allow us to plan, monitor and execute our goals. Using fMRI, we investigated how early deafness influences crossmodal plasticity and the organisation of executive functions in the adult human brain. Results from a range of visual executive function tasks (working memory, task switching, planning, inhibition) show that deaf individuals specifically recruit superior temporal “auditory” regions during task switching. Neural activity in auditory regions predicts behavioural performance during task switching in deaf individuals, highlighting the functional relevance of the observed cortical reorganisation. Furthermore, language grammatical skills were correlated with the level of activation and functional connectivity of fronto-parietal networks. Together, these findings show the interplay between sensory and language experience in the organisation of executive processing in the brain.
Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task
Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.
Sleep deprivation and the human brain: from brain physiology to cognition”
Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.
NOTE: DUE TO A CYBER ATTACK OUR UNIVERSITY WEB SYSTEM IS SHUT DOWN - TALK WILL BE RESCHEDULED
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output and how neurons are integrated in the surrounding neuronal network. Accordingly, neurons with aberrant morphology have been associated with neurological disorders. Dysmorphic, enlarged neurons are, for example, a hallmark of focal epileptogenic lesions like focal cortical dysplasia (FCDIIb) and gangliogliomas (GG). However, the regulatory mechanisms governing the development of dendrites are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. Nevertheless, its function in neurons is unknown. We found that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in cultured neurons and living mice. Moreover, SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown causes a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission is unaffected. This mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations exhibit significant loss of SLK expression. To uncover the signaling cascades underlying the action of SLK, we combined phosphoproteomics, protein interaction screens and single cell RNA seq. Overall, our data identifies SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.
More than a beast growing in a passive brain: excitation and inhibition drive epilepsy and glioma progression
Gliomas are brain tumors formed by networks of connected tumor cells, nested in and interacting with neuronal networks. Neuronal activities interfere with tumor growth and occurrence of seizures affects glioma prognosis, while the developing tumor triggers seizures in the infiltrated cortex. Oncometabolites produced by tumor cells and neurotransmitters affect both the generation of epileptic activities by neurons and the growth of glioma cells through synaptic-related mechanisms, involving both GABAergic / Chloride pathways and glutamatergic signaling. From a clinical sight, epilepsy occurrence is beneficial to glioma prognosis but growing tumors are epileptogenic, which constitutes a paradox. This lecture will review how inhibitory and excitatory signaling drives glioma growth and how epileptic and oncological processes are interfering, with a special focus on the human brain.
Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development
Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).
Impaired social reward valuation by chemogenetic inhibition of the primate prefronto-hypothalamic pathway
Targeting thalamic circuits rescues motor and mood deficits in PD mice
Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Cortical seizure mechanisms: insights from calcium, glutamate and GABA imaging
Focal neocortical epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood, but is likely to relate to the intermittent collapse of feed-forward GABAergic inhibition. Inhibition could fail through multiple mechanisms, including (i) an attenuation or even reversal of the driving force for chloride in postsynaptic neurons because of intense activation of GABAA receptors, (ii) an elevation of potassium secondary to chloride influx leading to depolarization of neurons, or (iii) insufficient GABA release from interneurons. I shall describe the results of experiments using fluorescence imaging of calcium, glutamate or GABA in awake rodent models of neocortical epileptiform activity. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagatedcentrifugally. GABA transients lasted longer than glutamate transients and were maximal ~1.5 mm from the focus. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing runaway recruitment of excitatory neurons as a fundamental mechanism underlying the escape of seizures from local inhibitory restraint.
A biologically plausible inhibitory plasticity rule for world-model learning in SNNs
Memory consolidation is the process by which recent experiences are assimilated into long-term memory. In animals, this process requires the offline replay of sequences observed during online exploration in the hippocampus. Recent experimental work has found that salient but task-irrelevant stimuli are systematically excluded from these replay epochs, suggesting that replay samples from an abstracted model of the world, rather than verbatim previous experiences. We find that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike time-dependent plasticity rule at inhibitory synapses. Using spiking networks at three levels of abstraction–leaky integrate-and-fire, biophysically detailed, and abstract binary–we show that this rule enables efficient inference of a model of the structure of the world. While plasticity has previously mainly been studied at excitatory synapses, we find that plasticity at excitatory synapses alone is insufficient to accomplish this type of structural learning. We present theoretical results in a simplified model showing that in the presence of Hebbian excitatory and inhibitory plasticity, the replayed sequences form a statistical estimator of a latent sequence, which converges asymptotically to the ground truth. Our work outlines a direct link between the synaptic and cognitive levels of memory consolidation, and highlights a potential conceptually distinct role for inhibition in computing with SNNs.
Universal function approximation in balanced spiking networks through convex-concave boundary composition
The spike-threshold nonlinearity is a fundamental, yet enigmatic, component of biological computation — despite its role in many theories, it has evaded definitive characterisation. Indeed, much classic work has attempted to limit the focus on spiking by smoothing over the spike threshold or by approximating spiking dynamics with firing-rate dynamics. Here, we take a novel perspective that captures the full potential of spike-based computation. Based on previous studies of the geometry of efficient spike-coding networks, we consider a population of neurons with low-rank connectivity, allowing us to cast each neuron’s threshold as a boundary in a space of population modes, or latent variables. Each neuron divides this latent space into subthreshold and suprathreshold areas. We then demonstrate how a network of inhibitory (I) neurons forms a convex, attracting boundary in the latent coding space, and a network of excitatory (E) neurons forms a concave, repellant boundary. Finally, we show how the combination of the two yields stable dynamics at the crossing of the E and I boundaries, and can be mapped onto a constrained optimization problem. The resultant EI networks are balanced, inhibition-stabilized, and exhibit asynchronous irregular activity, thereby closely resembling cortical networks of the brain. Moreover, we demonstrate how such networks can be tuned to either suppress or amplify noise, and how the composition of inhibitory convex and excitatory concave boundaries can result in universal function approximation. Our work puts forth a new theory of biologically-plausible computation in balanced spiking networks, and could serve as a novel framework for scalable and interpretable computation with spikes.
Lateral entorhinal cortex directly influences medial entorhinal cortex through synaptic connections in layer 1
Standard models of episodic memory suggest that lateral (LEC) and medial entorhinal cortex (MEC) send independent inputs to the hippocampus, each carrying different types of information. Here, we describe a pathway by which information is integrated between LEC and MEC prior to reaching hippocampus. We demonstrate that LEC sends strong projections to MEC arising from neurons that receive neocortical inputs. Activation of LEC inputs drives excitation of hippocampal-projecting neurons in MEC layer 2, typically followed by inhibition that is accounted for by parallel activation of local inhibitory neurons. We therefore propose that local circuits in MEC may support integration of ‘what’ and ‘where’ information.
Epigenome regulation in neocortex expansion and generation of neuronal subtypes
Evolutionarily, the expansion of the human neocortex accounts for many of the unique cognitive abilities of humans. This expansion appears to reflect the increased proliferative potential of basal progenitors (BPs) in mammalian evolution. Further cortical progenitors generate both glutamatergic excitatory neurons (ENs) and GABAergic inhibitory interneurons (INs) in human cortex, whereas they produce exclusively ENs in rodents. The increased proliferative capacity and neuronal subtype generation of cortical progenitors in mammalian evolution may have evolved through epigenetic alterations. However, whether or how the epigenome in cortical progenitors differs between humans and other species is unknown. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in amplification, neuronal subtype generation and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Furthermore, we found that the elevated H3 acetylation activates expression of IN genes in in developing mouse cortex and promote proliferation of IN progenitor-like cells in cortex of Pax6 mutant mouse models. Mechanistically, H3K9ac drives the BP amplification and proliferation of these IN progenitor-like cells by increasing expression of the evolutionarily regulated gene, TRNP1. Our findings demonstrate a previously unknown mechanism that controls neocortex expansion and generation of neuronal subtypes. Keywords: Cortical development, neurogenesis, basal progenitors, cortical size, gyrification, excitatory neuron, inhibitory interneuron, epigenetic profiling, epigenetic regulation, H3 acetylation, H3K9ac, TRNP1, PAX6
Spontaneous Emergence of Computation in Network Cascades
Neuronal network computation and computation by avalanche supporting networks are of interest to the fields of physics, computer science (computation theory as well as statistical or machine learning) and neuroscience. Here we show that computation of complex Boolean functions arises spontaneously in threshold networks as a function of connectivity and antagonism (inhibition), computed by logic automata (motifs) in the form of computational cascades. We explain the emergent inverse relationship between the computational complexity of the motifs and their rank-ordering by function probabilities due to motifs, and its relationship to symmetry in function space. We also show that the optimal fraction of inhibition observed here supports results in computational neuroscience, relating to optimal information processing.
Investigating activity-dependent processes in cerebral cortex development and disease
The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.
Ebselen: a lithium-mimetic without lithium side-effects?
Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.
Potential pathways for novel interventions in TLE
Inhibition of seizures can come from expected – and surprising – sources. In this talk I will explore circuit elements, both within and external to the temporal lobe, which may be able inhibit hippocampal seizures, and how specific aspects of intervention strategies can be critical for outcomes. We’ll discuss novel sources of inhibition within the hippocampus, the cerebellum as a potential target, and closed-loop optimization of stimulation parameters
Trading Off Performance and Energy in Spiking Networks
Many engineered and biological systems must trade off performance and energy use, and the brain is no exception. While there are theories on how activity levels are controlled in biological networks through feedback control (homeostasis), it is not clear what the effects on population coding are, and therefore how performance and energy can be traded off. In this talk we will consider this tradeoff in auto-encoding networks, in which there is a clear definition of performance (the coding loss). We first show how SNNs follow a characteristic trade-off curve between activity levels and coding loss, but that standard networks need to be retrained to achieve different tradeoff points. We next formalize this tradeoff with a joint loss function incorporating coding loss (performance) and activity loss (energy use). From this loss we derive a class of spiking networks which coordinates its spiking to minimize both the activity and coding losses -- and as a result can dynamically adjust its coding precision and energy use. The network utilizes several known activity control mechanisms for this --- threshold adaptation and feedback inhibition --- and elucidates their potential function within neural circuits. Using geometric intuition, we demonstrate how these mechanisms regulate coding precision, and thereby performance. Lastly, we consider how these insights could be transferred to trained SNNs. Overall, this work addresses a key energy-coding trade-off which is often overlooked in network studies, expands on our understanding of homeostasis in biological SNNs, as well as provides a clear framework for considering performance and energy use in artificial SNNs.
Neural Circuit Mechanisms of Pattern Separation in the Dentate Gyrus
The ability to discriminate different sensory patterns by disentangling their neural representations is an important property of neural networks. While a variety of learning rules are known to be highly effective at fine-tuning synapses to achieve this, less is known about how different cell types in the brain can facilitate this process by providing architectural priors that bias the network towards sparse, selective, and discriminable representations. We studied this by simulating a neuronal network modelled on the dentate gyrus—an area characterised by sparse activity associated with pattern separation in spatial memory tasks. To test the contribution of different cell types to these functions, we presented the model with a wide dynamic range of input patterns and systematically added or removed different circuit elements. We found that recruiting feedback inhibition indirectly via recurrent excitatory neurons proved particularly helpful in disentangling patterns, and show that simple alignment principles for excitatory and inhibitory connections are a highly effective strategy.
Reconstructing inhibitory circuits in a damaged brain
Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.
Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2
Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.
The balance of excitation and inhibition and a canonical cortical computation
Excitatory and inhibitory (E & I) inputs to cortical neurons remain balanced across different conditions. The balanced network model provides a self-consistent account of this observation: population rates dynamically adjust to yield a state in which all neurons are active at biological levels, with their E & I inputs tightly balanced. But global tight E/I balance predicts population responses with linear stimulus-dependence and does not account for systematic cortical response nonlinearities such as divisive normalization, a canonical brain computation. However, when necessary connectivity conditions for global balance fail, states arise in which only a localized subset of neurons are active and have balanced inputs. We analytically show that in networks of neurons with different stimulus selectivities, the emergence of such localized balance states robustly leads to normalization, including sublinear integration and winner-take-all behavior. An alternative model that exhibits normalization is the Stabilized Supralinear Network (SSN), which predicts a regime of loose, rather than tight, E/I balance. However, an understanding of the causal relationship between E/I balance and normalization in SSN and conditions under which SSN yields significant sublinear integration are lacking. For weak inputs, SSN integrates inputs supralinearly, while for very strong inputs it approaches a regime of tight balance. We show that when this latter regime is globally balanced, SSN cannot exhibit strong normalization for any input strength; thus, in SSN too, significant normalization requires localized balance. In summary, we causally and quantitatively connect a fundamental feature of cortical dynamics with a canonical brain computation. Time allowing I will also cover our work extending a normative theoretical account of normalization which explains it as an example of efficient coding of natural stimuli. We show that when biological noise is accounted for, this theory makes the same prediction as the SSN: a transition to supralinear integration for weak stimuli.
Mutation targeted gene therapy approaches to alter rod degeneration and retain cones
My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.
How sleep contributes to visual perceptual learning
Sleep is crucial for the continuity and development of life. Sleep-related problems can alter brain function, and cause potentially severe psychological and behavioral consequences. However, the role of sleep in our mind and behavior is far from clear. In this talk, I will present our research on how sleep may play a role in visual perceptual learning (VPL) by using simultaneous magnetic resonance spectroscopy and polysomnography in human subjects. We measured the concentrations of neurotransmitters in the early visual areas during sleep and obtained the excitation/inhibition (E/I) ratio which represents the amount of plasticity in the visual system. We found that the E/I ratio significantly increased during NREM sleep while it decreased during REM sleep. The E/I ratio during NREM sleep was correlated with offline performance gains by sleep, while the E/I ratio during REM sleep was correlated with the amount of learning stabilization. These suggest that NREM sleep increases plasticity, while REM sleep decreases it to solidify once enhanced learning. NREM and REM sleep may play complementary roles, reflected by significantly different neurochemical processing, in VPL.
Dynamic dopaminergic signaling probabilistically controls the timing of self-timed movements
Human movement disorders and pharmacological studies have long suggested molecular dopamine modulates the pace of the internal clock. But how does the endogenous dopaminergic system influence the timing of our movements? We examined the relationship between dopaminergic signaling and the timing of reward-related, self-timed movements in mice. Animals were trained to initiate licking after a self-timed interval following a start cue; reward was delivered if the animal’s first lick fell within a rewarded window (3.3-7 s). The first-lick timing distributions exhibited the scalar property, and we leveraged the considerable variability in these distributions to determine how the activity of the dopaminergic system related to the animals’ timing. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time, even on single trials. Steeply rising signals preceded early initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movement. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of the timing distribution, whereas inhibition caused late-shifting, as if dopaminergic manipulation modulated the moment-to-moment probability of unleashing the planned movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation. We conclude that ramping dopaminergic signals, potentially encoding dynamic reward expectation, probabilistically modulate the moment-by-moment decision of when to move. (Based on work from Hamilos et al., eLife, 2021).
Free will beyond spontaneous volition: Conscious control processes of inhibition and attention in self-control and free will
Polaris Koi (Philosophy) and Jake Gavenas (Neuroscience) begin the seminar by arguing that agentive control is the key requirement for free will, drawing on folk-philosophy findings to support this claim (Gavenas et al., in prep). They explore how two executive control processes that functionally involve consciousness—inhibition and top-down control of attention—connect self-control and free will.
Visual and cross-modal plasticity in adult humans
Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within a specific temporal window called critical period. However, it is still unclear to which extent the plastic potential of the visual cortex is retained in adulthood. We have surprisingly revealed residual ocular dominance plasticity in adult humans by showing that short-term monocular deprivation unexpectedly boosts the deprived eye (both at the perceptual and at the neural level), reflecting homeostatic plasticity. This effect is accompanied by a decrease of GABAergic inhibition in the primary visual cortex and can be modulated by non-visual factors (motor activity and motor plasticity). Finally, we have found that cross-modal plasticity is preserved in adult normal-sighted humans, as short-term monocular deprivation can alter early visuo-tactile interactions. Taken together, these results challenge the classical view of a hard-wired adult visual cortex, indicating that homeostatic plasticity can be reactivated in adult humans.
The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development
N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.
Response of cortical networks to optogenetic stimulation: Experiment vs. theory
Optogenetics is a powerful tool that allows experimentalists to perturb neural circuits. What can we learn about a network from observing its response to perturbations? I will first describe the results of optogenetic activation of inhibitory neurons in mice cortex, and show that the results are consistent with inhibition stabilization. I will then move to experiments in which excitatory neurons are activated optogenetically, with or without visual inputs, in mice and monkeys. In some conditions, these experiments show a surprising result that the distribution of firing rates is not significantly changed by stimulation, even though firing rates of individual neurons are strongly modified. I will show in which conditions a network model of excitatory and inhibitory neurons can reproduce this feature.
A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina
To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.
JAK/STAT regulation of the transcriptomic response during epileptogenesis
Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.
Roles of attention and consciousness in perceptual learning
Visual perceptual learning (VPL) is defined as improved performance on a visual task due to visual experience. It was once argued that attention to a visual feature is necessary for VPL of the feature to occur. Contrary to this view, a phenomenon called task-irrelevant VPL demonstrated that VPL can occur due to exposure to a feature which is sub-threshold and task-irrelevant, and therefore, unattended. A series of findings based on task-irrelevant VPL has indicated the following two mechanisms. First, attention to a feature facilitates VPL of the feature while inhibiting VPL of unattended and supra-threshold features. Second, reward paired with a feature enables VPL of the feature irrespective of whether the feature is attended or not. However, we recently found an additional twist; VPL of a task-irrelevant and supra-threshold feature embedded in a natural scene is not subject to the inhibition of attention. This new finding suggests a need to revise the current view or add a new mechanism as to how VPL occurs.
Inhibitory connectivity and computations in olfaction
We use the olfactory system and forebrain of (adult) zebrafish as a model to analyze how relevant information is extracted from sensory inputs, how information is stored in memory circuits, and how sensory inputs inform behavior. A series of recent findings provides evidence that inhibition has not only homeostatic functions in neuronal circuits but makes highly specific, instructive contributions to behaviorally relevant computations in different brain regions. These observations imply that the connectivity among excitatory and inhibitory neurons exhibits essential higher-order structure that cannot be determined without dense network reconstructions. To analyze such connectivity we developed an approach referred to as “dynamical connectomics” that combines 2-photon calcium imaging of neuronal population activity with EM-based dense neuronal circuit reconstruction. In the olfactory bulb, this approach identified specific connectivity among co-tuned cohorts of excitatory and inhibitory neurons that can account for the decorrelation and normalization (“whitening”) of odor representations in this brain region. These results provide a mechanistic explanation for a fundamental neural computation that strictly requires specific network connectivity.
NMC4 Short Talk: Multiscale and extended retrieval of associative memory structures in a cortical model of local-global inhibition balance
Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one connected to excitatory assemblies locally and the other connected globally – can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible and behaviourally-useful function of inhibitory diversity in memory.
Novel word generalization in comparison designs: How do young children align stimuli when they learn object nouns and relational nouns?
It is well established that the opportunity to compare learning stimuli in a novel word learning/extension task elicits a larger number of conceptually relevant generalizations than standard no-comparison conditions. I will present results suggesting that the effectiveness of comparison depends on factors such as semantic distance, number of training items, dimension distinctiveness and interactions with age. I will address these issues in the case of familiar and unfamiliar object nouns and relational nouns. The alignment strategies followed by children during learning and at test (i.e., when learning items are compared and how children reach a solution) will be described with eye-tracking data. We will also assess the extent to which children’s performance in these tasks are associated with executive functions (inhibition and flexibility) and world knowledge. Finally, we will consider these issues in children with cognitive deficits (Intellectual deficiency, DLD)
Synaptic plasticity controls the emergence of population-wide invariant representations in balanced network models
The intensity and features of sensory stimuli are encoded in the activity of neurons in the cortex. In the visual and piriform cortices, the stimulus intensity re-scales the activity of the population without changing its selectivity for the stimulus features. The cortical representation of the stimulus is therefore intensity-invariant. This emergence of network invariant representations appears robust to local changes in synaptic strength induced by synaptic plasticity, even though: i) synaptic plasticity can potentiate or depress connections between neurons in a feature-dependent manner, and ii) in networks with balanced excitation and inhibition, synaptic plasticity determines the non-linear network behavior. In this study, we investigate the consistency of invariant representations with a variety of synaptic states in balanced networks. By using mean-field models and spiking network simulations, we show how the synaptic state controls the emergence of intensity-invariant or intensity-dependent selectivity by inducing changes in the network response to intensity. In particular, we demonstrate how facilitating synaptic states can sharpen the network selectivity while depressing states broaden it. We also show how power-law-type synapses permit the emergence of invariant network selectivity and how this plasticity can be generated by a mix of different plasticity rules. Our results explain how the physiology of individual synapses is linked to the emergence of invariant representations of sensory stimuli at the network level.
Representation transfer and signal denoising through topographic modularity
To prevail in a dynamic and noisy environment, the brain must create reliable and meaningful representations from sensory inputs that are often ambiguous or corrupt. Since only information that permeates the cortical hierarchy can influence sensory perception and decision-making, it is critical that noisy external stimuli are encoded and propagated through different processing stages with minimal signal degradation. Here we hypothesize that stimulus-specific pathways akin to cortical topographic maps may provide the structural scaffold for such signal routing. We investigate whether the feature-specific pathways within such maps, characterized by the preservation of the relative organization of cells between distinct populations, can guide and route stimulus information throughout the system while retaining representational fidelity. We demonstrate that, in a large modular circuit of spiking neurons comprising multiple sub-networks, topographic projections are not only necessary for accurate propagation of stimulus representations, but can also help the system reduce sensory and intrinsic noise. Moreover, by regulating the effective connectivity and local E/I balance, modular topographic precision enables the system to gradually improve its internal representations and increase signal-to-noise ratio as the input signal passes through the network. Such a denoising function arises beyond a critical transition point in the sharpness of the feed-forward projections, and is characterized by the emergence of inhibition-dominated regimes where population responses along stimulated maps are amplified and others are weakened. Our results indicate that this is a generalizable and robust structural effect, largely independent of the underlying model specificities. Using mean-field approximations, we gain deeper insight into the mechanisms responsible for the qualitative changes in the system’s behavior and show that these depend only on the modular topographic connectivity and stimulus intensity. The general dynamical principle revealed by the theoretical predictions suggest that such a denoising property may be a universal, system-agnostic feature of topographic maps, and may lead to a wide range of behaviorally relevant regimes observed under various experimental conditions: maintaining stable representations of multiple stimuli across cortical circuits; amplifying certain features while suppressing others (winner-take-all circuits); and endow circuits with metastable dynamics (winnerless competition), assumed to be fundamental in a variety of tasks.
The generation of cortical novelty responses through inhibitory plasticity
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
Mechanisms of CACNA1A-associated developmental epileptic encephalopathies
Developmental epileptic encephalopathies are early-onset epilepsies, often refractory to therapy, with developmental delay or regression. These disorders carry poor neurodevelopmental prognosis, with long-term refractory epilepsy and persistent cognitive, behavioral and motor deficits. Mutations in the CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 voltage-gated calcium channels, result in a spectrum of neurological disorders, including severe, early-onset epileptic encephalopathies. Recent work from the Rossignol lab helped characterize the phenotypic spectrum of CACNA1A-related epilepsies in humans. Using conditional genetics and novel animal models, the Rossignol lab unveiled some of the underlying pathophysiological mechanisms, including critical deficits in cortical inhibition, resulting in seizures and a range of cognitive-behavioral deficits. Importantly, Dr. Rossignol’s team demonstrated that the targeted activation of specific GABAergic interneuron populations in selected cortical regions prevents motor seizures and reverts attention deficits and cognitive rigidity in mouse models of the disorder. These recent findings open novel avenues for the treatment of these severe CACNA1A-associated neurodevelopmental disorders.
Deriving local synaptic learning rules for efficient representations in networks of spiking neurons
How can neural networks learn to efficiently represent complex and high-dimensional inputs via local plasticity mechanisms? Classical models of representation learning assume that input weights are learned via pairwise Hebbian-like plasticity. Here, we show that pairwise Hebbian-like plasticity only works under specific requirements on neural dynamics and input statistics. To overcome these limitations, we derive from first principles a learning scheme based on voltage-dependent synaptic plasticity rules. Here, inhibition learns to locally balance excitatory input in individual dendritic compartments, and thereby can modulate excitatory synaptic plasticity to learn efficient representations. We demonstrate in simulations that this learning scheme works robustly even for complex, high-dimensional and correlated inputs. It also works in the presence of inhibitory transmission delays, where Hebbian-like plasticity typically fails. Our results draw a direct connection between dendritic excitatory-inhibitory balance and voltage-dependent synaptic plasticity as observed in vivo, and suggest that both are crucial for representation learning.
Optimising spiking interneuron circuits for compartment-specific feedback
Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. The resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models
Neural dynamics of probabilistic information processing in humans and recurrent neural networks
In nature, sensory inputs are often highly structured, and statistical regularities of these signals can be extracted to form expectation about future sensorimotor associations, thereby optimizing behavior. One of the fundamental questions in neuroscience concerns the neural computations that underlie these probabilistic sensorimotor processing. Through a recurrent neural network (RNN) model and human psychophysics and electroencephalography (EEG), the present study investigates circuit mechanisms for processing probabilistic structures of sensory signals to guide behavior. We first constructed and trained a biophysically constrained RNN model to perform a series of probabilistic decision-making tasks similar to paradigms designed for humans. Specifically, the training environment was probabilistic such that one stimulus was more probable than the others. We show that both humans and the RNN model successfully extract information about stimulus probability and integrate this knowledge into their decisions and task strategy in a new environment. Specifically, performance of both humans and the RNN model varied with the degree to which the stimulus probability of the new environment matched the formed expectation. In both cases, this expectation effect was more prominent when the strength of sensory evidence was low, suggesting that like humans, our RNNs placed more emphasis on prior expectation (top-down signals) when the available sensory information (bottom-up signals) was limited, thereby optimizing task performance. Finally, by dissecting the trained RNN model, we demonstrate how competitive inhibition and recurrent excitation form the basis for neural circuitry optimized to perform probabilistic information processing.
Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders
Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders with strong male-bias, such as autism spectrum disorder. We modeled some of these prenatal risk factors in mice, by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly dysregulated the maternal immune system. Male but not female offspring displayed long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions, along with disruptions of gut structure and microbiome composition. Cellularly, prenatal stressors impaired microglial synaptic pruning in males during early postnatal development. Precise inhibition of microglial phagocytosis during the same critical period mimicked the impact of prenatal stressors on the male-specific social deficits. Conversely, modifying the gut microbiome rescued the social and cellular deficits, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development, perhaps via a gut-brain disruption.
Interpreting the Mechanisms and Meaning of Sensorimotor Beta Rhythms with the Human Neocortical Neurosolver (HNN) Neural Modeling Software
Electro- and magneto-encephalography (EEG/MEG) are the leading methods to non-invasively record human neural dynamics with millisecond temporal resolution. However, it can be extremely difficult to infer the underlying cellular and circuit level origins of these macro-scale signals without simultaneous invasive recordings. This limits the translation of E/MEG into novel principles of information processing, or into new treatment modalities for neural pathologies. To address this need, we developed the Human Neocortical Neurosolver (HNN: https://hnn.brown/edu ), a new user-friendly neural modeling tool designed to help researchers and clinicians interpret human imaging data. A unique feature of HNN’s model is that it accounts for the biophysics generating the primary electric currents underlying such data, so simulation results are directly comparable to source localized data. HNN is being constructed with workflows of use to study some of the most commonly measured E/MEG signals including event related potentials, and low frequency brain rhythms. In this talk, I will give an overview of this new tool and describe an application to study the origin and meaning of 15-29Hz beta frequency oscillations, known to be important for sensory and motor function. Our data showed that in primary somatosensory cortex these oscillations emerge as transient high power ‘events’. Functionally relevant differences in averaged power reflected a difference in the number of high-power beta events per trial (“rate”), as opposed to changes in event amplitude or duration. These findings were consistent across detection and attention tasks in human MEG, and in local field potentials from mice performing a detection task. HNN modeling led to a new theory on the circuit origin of such beta events and suggested beta causally impacts perception through layer specific recruitment of cortical inhibition, with support from invasive recordings in animal models and high-resolution MEG in humans. In total, HNN provides an unpresented biophysically principled tool to link mechanism to meaning of human E/MEG signals.
Integration of „environmental“ information in the neuronal epigenome
The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.
Disinhibitory and neuromodulatory regulation of hippocampal synaptic plasticity
The CA1 pyramidal neurons are embedded in an intricate local circuitry that contains a variety of interneurons. The roles these interneurons play in the regulation of the excitatory synaptic plasticity remains largely understudied. Recent experiments showed that repeated cholinergic activation of 𝛼7 nACh receptors expressed in oriens-lacunosum-moleculare (OLM𝛼2) interneurons could induce LTP in SC-CA1 synapses. We used a biophysically realistic computational model to examine mechanistically how cholinergic activation of OLMa2 interneurons increases SC to CA1 transmission. Our results suggest that, when properly timed, activation of OLMa2 interneurons cancels the feedforward inhibition onto CA1 pyramidal cells by inhibiting fast-spiking interneurons that synapse on the same dendritic compartment as the SC, i.e., by disinhibiting the pyramidal cell dendritic compartment. Our work further describes the pairing of disinhibition with SC stimulation as a general mechanism for the induction of synaptic plasticity. We found that locally-reduced GABA release (disinhibition) paired with SC stimulation could lead to increased NMDAR activation and intracellular calcium concentration sufficient to upregulate AMPAR permeability and potentiate the excitatory synapse. Our work suggests that inhibitory synapses critically modulate excitatory neurotransmission and induction of plasticity at excitatory synapses. Our work also shows how cholinergic action on OLM interneurons, a mechanism whose disruption is associated with memory impairment, can down-regulate the GABAergic signaling into CA1 pyramidal cells and facilitate potentiation of the SC-CA1 synapse.
Dynamical population coding during defensive behaviours in prefrontal circuits
Coping with threatening situations requires both identifying stimuli predicting danger and selecting adaptive behavioral responses in order to survive. The dorso medial prefrontal cortex (dmPFC) is a critical structure involved in the regulation of threat-related behaviour, yet it is still largely unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks in order to successfully drive adaptive responses. To address these questions, we used a combination of extracellular recordings, neuronal decoding approaches, and optogenetic manipulations to show that threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. These data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations and discriminates threat- from non-threat cues, it does not predict action outcome. In contrast, transient dmPFC population activity prior to action initiation reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity critically constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of active fear responses relies on a dynamic process of information linking threats with defensive actions unfolding within prefrontal networks.
Parp mutations protect from mitochondrial toxicity in Alzheimer’s disease
Alzheimer’s disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer’s disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here, we analysed the metabolomic changes in flies over-expressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer’s disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer’s disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B, are associated with a decrease in the risk and severity of Alzheimer’s disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes, such as PARPs are potential therapies for Alzheimer’s disease.
Visual processing of feedforward and feedback signals in mouse thalamus
Traditionally, the dorsolateral geniculate nucleus (dLGN) of the thalamus has been considered a feedforward relay station for retinal signals to reach primary visual cortex. The local and long-range circuits of dLGN, however, suggest that this view is not correct. Indeed, besides the thalamo-cortical relay cells, dLGN contains local inhibitory interneurons, and receives not only feedforward input from the retina, but also massive direct and indirect feedback from primary visual cortex. Furthermore, it is one of the earliest processing stages in the visual system that integrates visual information with neuromodulatory signals.
A fresh look at the bird retina
I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.
Neural correlates of cognitive control across the adult lifespan
Cognitive control involves the flexible allocation of mental resources during goal-directed behaviour and comprises three correlated but distinct domains—inhibition, task shifting, and working memory. Healthy ageing is characterised by reduced cognitive control. Professor Cheryl Grady and her team have been studying the influence of age differences in large-scale brain networks on the three control processes in a sample of adults from 20 to 86 years of age. In this webinar, Professor Cheryl Grady will describe three aspects of this work: 1) age-related dedifferentiation and reconfiguration of brain networks across the sub-domains 2) individual differences in the relation of task-related activity to age, structural integrity and task performance for each sub-domain 3) modulation of brain signal variability as a function of cognitive load and age during working memory. This research highlights the reduction in dynamic range of network activity that occurs with ageing and how this contributes to age differences in cognitive control. Cheryl Grady is a senior scientist at the Rotman Research Institute at Baycrest, and Professor in the departments of Psychiatry and Psychology at the University of Toronto. She held the Canada Research Chair in Neurocognitive Aging from 2005-2018 and was elected as a Fellow of the Royal Society of Canada in 2019. Her research uses MRI to determine the role of brain network connectivity in cognitive ageing.
A theory for Hebbian learning in recurrent E-I networks
The Stabilized Supralinear Network is a model of recurrently connected excitatory (E) and inhibitory (I) neurons with a supralinear input-output relation. It can explain cortical computations such as response normalization and inhibitory stabilization. However, the network's connectivity is designed by hand, based on experimental measurements. How the recurrent synaptic weights can be learned from the sensory input statistics in a biologically plausible way is unknown. Earlier theoretical work on plasticity focused on single neurons and the balance of excitation and inhibition but did not consider the simultaneous plasticity of recurrent synapses and the formation of receptive fields. Here we present a recurrent E-I network model where all synaptic connections are simultaneously plastic, and E neurons self-stabilize by recruiting co-tuned inhibition. Motivated by experimental results, we employ a local Hebbian plasticity rule with multiplicative normalization for E and I synapses. We develop a theoretical framework that explains how plasticity enables inhibition balanced excitatory receptive fields that match experimental results. We show analytically that sufficiently strong inhibition allows neurons' receptive fields to decorrelate and distribute themselves across the stimulus space. For strong recurrent excitation, the network becomes stabilized by inhibition, which prevents unconstrained self-excitation. In this regime, external inputs integrate sublinearly. As in the Stabilized Supralinear Network, this results in response normalization and winner-takes-all dynamics: when two competing stimuli are presented, the network response is dominated by the stronger stimulus while the weaker stimulus is suppressed. In summary, we present a biologically plausible theoretical framework to model plasticity in fully plastic recurrent E-I networks. While the connectivity is derived from the sensory input statistics, the circuit performs meaningful computations. Our work provides a mathematical framework of plasticity in recurrent networks, which has previously only been studied numerically and can serve as the basis for a new generation of brain-inspired unsupervised machine learning algorithms.
Co-tuned, balanced excitation and inhibition in olfactory memory networks
Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.
Anatomical and functional characterization of the neuronal circuits underlying ejaculation
During sexual behavior, copulation related sensory information and modulatory signals from the brain must be integrated and converted into the motor and secretory outputs that characterize ejaculation (Lenschow and Lima, Current Opinion in Neurobiology, 2020). Studies in humans and rats suggest the existence of interneurons in the lumbar spinal cord that mediates that step: the spinal ejaculation generator (SEG). My work aimed at gaining mechanistic insights about the neuronal circuits controlling ejaculation thereby applying cutting-edge techniques. More specifically, we mapped anatomically and functionally the spinal circuit for ejaculation starting from the main muscle being involved in sperm expulsion: the bulbospongiosus muscle (BSM). Combining viral tracing strategies with electrophysiology, we specifically show that the BSM motoneurons receive direct synaptic input from a group of interneurons located in between lumbar segment 2 and 3 and expressing the peptide galanin. Electrically and optogenetically activating the galanin positive cells (the SEG) lead to the activation of the motoneurons innervating the BSM and the muscle itself. Finally, inhibition of SEG cells using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in sexual behaving animals is currently conducted to reveal whether ejaculation can be prevented.