← Back

Electrophysiology

Topic spotlight
TopicWorld Wide

electrophysiology

Discover seminars, jobs, and research tagged with electrophysiology across World Wide.
96 curated items60 Seminars25 Positions11 ePosters
Updated 4 days ago

Pick a domain context

This cross-domain view is for discovery. Choose a domain-scoped topic page for the canonical URL.

96 items · electrophysiology
96 results
Position

PD Dr. Zohreh Hosseinzadeh

Leipzig University
Leipzig, Germany
Dec 21, 2025

PhD position in retina research for ERC grant project Join a 3-year PhD program in retinal development and immerse yourself in cutting-edge research to unlock the secrets of the human retina organoids from stem cells. With state-of-the-art techniques, you'll have the opportunity to make a real impact by developing innovative solutions for ocular diseases. Advance your career and change the future of eye care: This program offers you a unique opportunity to be at the forefront of scientific discovery. Apply now and take your passion and creativity to the next level! What we are looking for a PhD candidate for the position: • An excellent academic record • Experimental knowledge in electrophysiology (patch clamp, multi-electrode array) , ideally in functional imaging, cell/tissue culture or molecular biology is an advantage • A solid background in biology, ideally in neuroscience • Background in statistics and data analysis • Programming experience in Python, Matlab, R or similar is ideal • Personal skills: The applicant must have a good organizational skills, and the ability to work autonomously, but willing to perform and interact efficiently within a multidisciplinary team. What we offer: A friendly, stimulating, international and multidisciplinary environment. Leipzig has beautiful nature, perfect for hiking, biking, and swimming. The successful candidate will be enrolled in the Graduate School for Brain Dynamics of the Leipzig University. The application package is expected to contain: • A CV • The motivation for applying to this position • Two reference letters • master certificate Please send the documents to Zohreh.Hosseinzadeh@medizin.uni-leipzig.de (PD Dr. Zohreh Hosseinzadeh); Focke.Ziemssen@medizin.uni-leipzig.de (Prof. Focke Ziemssen)

Position

Zohreh Hosseinzadeh

Leipzig University
Leipzig
Dec 21, 2025

Title: senior associate research (Junior lab Leader) - Electrocardiography for Recording Retina and Retinal Organoids We are seeking a highly motivated and talented senior associate research (Junior lab Leader) to join our team in the development of functional organoids and study physiology of the retina. Responsibilities: Design and lead experiments to record electrocardiography with MEA and patch clamp or/and calcium imaging signals from retinal organoids and mouse retina. Perform analysis of recorded data. Collaborate with other team members to generate functional organoids for retinal research. Interpret data and communicate results effectively to the team and stakeholders. Publish findings in peer-reviewed journals. Assist in the mentoring and training of students and other team members. Requirements: • Ph.D. in relevant field (e.g., biology, bioengineering, biomedical engineering). • Proven experience in electrocardiography (patch clamp, multi-electrode array) , ideally in functional imaging, cell/tissue culture or molecular biology is an advantage • Familiarity with the latest techniques in the biology • Background in statistics and data analysis • Programming experience in Python, Matlab, R or similar is ideal • Strong analytical and problem-solving skills • Ability to work independently and as part of a team and supervise students. • Excellent communication and interpersonal skills • Track record of publications in peer-reviewed journals. We offer: An exciting and innovative research environment with state-of-the-art facilities. A highly motivated and collaborative team of scientists. Opportunities for professional development and career advancement. Competitive salary and benefits package. 3+2 years contrcat If you are a highly motivated and talented Junior lab Leader with expertise in electrocardiography and calcium imaging for recording retina and a passion for advancing the field of retinal research, please submit your CV, cover letter, and the contact information for two references to Zohreh.Hosseinzadeh@medizin.uni-leipzig.de (PD Dr. Zohreh Hosseinzadeh. We look forward to hearing from you!

Position

Dr. Jasper Poort

University of Cambridge
Cambridge, United Kingdom
Dec 21, 2025

Applications are invited for a postdoctoral research associate to study visual learning and attention brain circuits in mice. The post is based in the lab of Dr Jasper Poort in the Department of Physiology, Development and Neuroscience at the University of Cambridge. The successful candidate will work on a research project funded by the Wellcome Trust that will investigate the neural circuit mechanisms of visual learning and attention (see Poort et al., Neuron 2015, Khan et al, Nature Neuroscience 2018, Poort et al, Neuron 2021). The project combines two-photon calcium imaging, electrophysiology and optogenetic manipulation of different cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice (including mouse models of neurodevelopmental disorders) learn to become experts in different visually-guided decision-making tasks and flexibly switch attention between tasks. The successful applicant will join a supportive and multi-disciplinary research environment and collaborate with experts on learning and attention in rodents and humans, experts on learning and attention impairments in mental disorders, and computational neuroscientists. Applicants should have completed (or are about to submit) a PhD (research associate) or (under)graduate degree (research assistant) in neuroscience, biology, engineering, or other relevant disciplines. We are looking for someone with previous experience in two-photon imaging/electrophysiology/optogenetics/pharmacology/histology and behavioural training in mice, and strong data analysis skills (e.g. Matlab or Python). The research position is available from Feb 2022 onwards for an initial 2 year period with the possibility for extension. For more information about the lab see https://www.pdn.cam.ac.uk/svl/. Apply here: https://www.jobs.cam.ac.uk/job/32860/ In addition to the cover letter, CV, and contact details of 2 references, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the neural circuits for learning and attention in mice and their future research ambitions. The closing date for applications is 15th January 2022. Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk). References: Poort, Wilmes,Chadwick, Blot, Sahani, Clopath, Mrsic-Flogel, Hofer, Khan (2021). Learning and attention increase neuronal response selectivity in mouse primary visual cortex through distinct mechanisms. Neuron https://doi.org/10.1016/j.neuron.2021.11.016 Khan, Poort, Chadwick, Blot, Sahani, Mrsic-Flogel, Hofer (2018). Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience https://doi.org/10.1038/s41593-018-0143-z Poort, Khan, Pachitariu, Nemri, Orsolic, Krupic, Bauza, Sahani, Keller, Mrsic-Flogel, Hofer (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron https://doi.org/10.1016/j.neuron.2015.05.037

PositionNeuroscience

Dr. Tom Franken

Washington University
St. Louis, USA
Dec 21, 2025

A postdoctoral position is available in Dr. Tom Franken’s laboratory in the Department of Neuroscience at the Washington University School of Medicine in St. Louis. The project will study the neural circuits that parse visual scenes into organized collections of objects. We use a variety of techniques including high-density electrophysiology, behavior, optogenetics, and viral targeting in non-human primates. For more information on the lab, please visit sites.wustl.edu/frankenlab/. The PI is committed to mentoring and to nurturing a creative, thoughtful and collaborative lab culture. The laboratory is in an academic setting in the Department of Neuroscience at the Washington University School of Medicine in St. Louis, a large and collaborative scientific community. This provides an ideal environment to train, conduct research, and launch a career in science. Postdoctoral appointees at Washington University receive a competitive salary and a generous benefits package (hr.wustl.edu/benefits/). WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research and offers an outstanding interdisciplinary training environment for early career researchers. In addition to high-quality research facilities, career and professional development training for postdoctoral researchers is provided through the Career Center, Teaching Center, Office of Postdoctoral Affairs, and campus groups. St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scenes. On top of it all, St. Louis is affordable and commuting to campus is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities (postdoc.wustl.edu/prospective-postdocs/why-st-louis/). Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Additional information on being a postdoc at Washington University in St. Louis can be found at neuroscience.wustl.edu/education/postdoctoral-research/ and postdoc.wustl.edu/prospective-postdocs. Required Qualifications Ph.D. (or equivalent doctoral) degree in neuroscience (broadly defined). Strong background in either electrophysiology, behavioral techniques or scientific programming/machine learning. Preferred Qualifications Experience with training of larger animals. Experience with electrophysiology. Experience with studies of the visual system. Ability to think creatively to solve problems. Well organized and attention to detail. Excellent oral and written communication skills. Team player with a high level of initiative and motivation. Working Conditions This position works in a laboratory environment with potential exposure to biological and chemical hazards. The individual must be physically able to wear protective equipment and to provide standard care to research animals. Salary Range Base pay is commensurate with experience. Applicant Special Instructions Applicants should submit the following materials to Dr. Tom Franken at ftom@wustl.edu: 1) A cover letter explaining how their interest in the position matches their background and career goals. 2) CV or Biosketch. 3) Contact information for at least three professional references. Accommodation If you are unable to use our online application system and would like an accommodation, please email CandidateQuestions@wustl.edu or call the dedicated accommodation inquiry number at 314-935-1149 and leave a voicemail with the nature of your request. Pre-Employment Screening All external candidates receiving an offer for employment will be required to submit to pre-employment screening for this position. The screenings will include criminal background check and, as applicable for the position, other background checks, drug screen, an employment and education or licensure/certification verification, physical examination, certain vaccinations and/or governmental registry checks. All offers are contingent upon successful completion of required screening. Benefits Statement Washington University in St. Louis is committed to providing a comprehensive and competitive benefits package to our employees. Benefits eligibility is subject to employment status, full-time equivalent (FTE) workload, and weekly standard hours. Please visit our website at https://hr.wustl.edu/benefits/ to view a summary of benefits. EEO/AA Statement Washington University in St. Louis is committed to the principles and practices of equal employment opportunity and especially encourages applications by those from underrepresented groups. It is the University’s policy to provide equal opportunity and access to persons in all job titles without regard to race, ethnicity, color, national origin, age, religion, sex, sexual orientation, gender identity or expression, disability, protected veteran status, or genetic information. Diversity Statement Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply.

Position

Lukas Groschner

The Francis Crick Institute
London, United Kingdom
Dec 21, 2025

The Groschner lab studies signal processing in the brain using the fruit fly as a model. Our current research focuses on temporal patterns of neural activity that unfold over hundreds of milliseconds up to minutes. Under the umbrella of temporal signal processing, the successful applicant will address one of the following three questions: 1) What ion channel make-up and what circuit motifs allow neurons to delay signals by hundreds of milliseconds? 2) How does visual information accumulate over time to inform behavioural choice? 3) How does a brain construct a memory that is stable during times of immobility, but exquisitely malleable—sensitive to every step—during locomotion? The projects rely on a common set of experimental and computational approaches, which include behavioural assays, recordings and manipulations of neural activity in vivo, transcriptomic profiling of neuronal populations, and biophysically realistic modelling of neurons and circuits. The Groschner lab strives to foster an environment that welcomes, includes, and values people with diverse backgrounds and experiences. We provide all Postdoctoral Fellows with the support, space, and resources they need to pursue their goals and place and emphasis on furthering their careers. They will lead their own projects, contribute to other projects on a collaborative basis (both in the lab and with external collaborators) and may guide PhD students in their research. The ability to work in a team is essential.

Position

Dr. Jasper Poort

University of Cambridge
Cambridge, United Kingdom
Dec 21, 2025

Applications are invited for a postdoctoral research associate to study visual learning and attention brain circuits in mice. The post is based in the lab of Dr Jasper Poort in the Department of Physiology, Development and Neuroscience at the University of Cambridge. The successful candidate will work on a research project funded by the Wellcome Trust that will investigate the neural circuit mechanisms of visual learning and attention (see Poort et al., Neuron 2015, Khan et al, Nature Neuroscience 2018, Poort et al, Neuron 2021). The project combines two-photon calcium imaging, electrophysiology and optogenetic manipulation of different cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice (including mouse models of neurodevelopmental disorders) learn to become experts in different visually-guided decision-making tasks and flexibly switch attention between tasks. The successful applicant will join a supportive and multi-disciplinary research environment and collaborate with experts on learning and attention in rodents and humans, experts on learning and attention impairments in mental disorders, and computational neuroscientists. Applicants should have completed (or are about to submit) a PhD (research associate) or (under)graduate degree (research assistant) in neuroscience, biology, engineering, or other relevant disciplines. We are looking for someone with previous experience in two-photon imaging/electrophysiology/optogenetics/pharmacology/histology and behavioural training in mice, and strong data analysis skills (e.g. Matlab or Python). The research position is available from Feb 2022 onwards for an initial 2 year period with the possibility for extension. For more information about the lab see https://www.pdn.cam.ac.uk/svl/. Apply here: https://www.jobs.cam.ac.uk/job/32860/ In addition to the cover letter, CV, and contact details of 2 references, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the neural circuits for learning and attention in mice and their future research ambitions. The closing date for applications is 15th January 2022. Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk). References: Poort, Wilmes,Chadwick, Blot, Sahani, Clopath, Mrsic-Flogel, Hofer, Khan (2021). Learning and attention increase neuronal response selectivity in mouse primary visual cortex through distinct mechanisms. Neuron https://doi.org/10.1016/j.neuron.2021.11.016 Khan, Poort, Chadwick, Blot, Sahani, Mrsic-Flogel, Hofer (2018). Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience https://doi.org/10.1038/s41593-018-0143-z Poort, Khan, Pachitariu, Nemri, Orsolic, Krupic, Bauza, Sahani, Keller, Mrsic-Flogel, Hofer (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron https://doi.org/10.1016/j.neuron.2015.05.037

Position

Prof. Carmen Varela

Florida State University
Tallahassee, United States
Dec 21, 2025

The Varela lab is hiring a full-time research assistant to perform electrophysiology and pharmacology experiments in rats to investigate the link between sleep architecture, memory consolidation and thalamic neural activity. This project is part of a wider research program in the lab that seeks to provide mechanistic insight on the role of sleep dysfunction in Alzheimer’s Disease and related disorders. This is a great opportunity for students looking to strengthen their research skills and academic competitiveness for PhD and MD-PhD Programs in Neuroscience. Start date flexible in the Fall of 2023 or early 2024; 1 year with possibility of renewal. The Varela laboratory investigates the cellular and network mechanisms of learning and memory in rodents. We use a broad range of state-of-the-art methods, including multi-site extracellular recordings in freely behaving rats, closed-loop manipulations of brain activity, optogenetics, and computational approaches http://www.varelalab.org/

Position

Yao Chen, PhD

Department of Neuroscience, Washington University School of Medicine
St. Louis, USA
Dec 21, 2025

Yao Chen’s laboratory at Washington University in St. Louis is seeking a passionate Postdoctoral or staff/senior scientist/engineer who is interested in building innovative optical setups and making them useful for biological discovery. The candidate should have at least 2-3 years of experience developing optical instrumentation or microscopy methods, background in fluorescence imaging, and experience developing custom imaging software. The successful applicant will design, build, and characterize innovative optical instruments for fluorescence microscopy applications. The candidate will also have opportunities to perform optical imaging experiments and quantitative data analyses for neuroscience discovery, as well as contribute to writing research papers and grant applications. The projects in the lab aim to understand how the spatial and temporal features of signals inside the cell respond to neuromodulators (chemicals in the brain), behavior state transitions, and learning. The imaging experiments are often combined with optogenetics and electrophysiology. The candidate has access to cutting-edge instrumentation within the lab, numerous core facilities within Washington University, and will be part of a vibrant and collegial neuroscience and engineering community. We are committed to mentoring and offer a creative, thoughtful, and collaborative scientific environment. We welcome individuals who value rigor, innovation, and collegiality, and will value your creativity in shaping the projects. The lab consists of a mix of kind, fearless, and dedicated students, postdocs, and staff with diverse research and cultural backgrounds. In addition to performing their own innovative work, the candidate will have opportunities to collaborate with, learn from, and mentor other lab members. Our lab is a member of the Department of Neuroscience at Washington University School of Medicine in St. Louis, a large and collegial scientific community. WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research. Additional information on being a postdoc at Washington University in St. Louis can be found at https://neuroscience.wustl.edu/education/postdoctoral-research/ and https://postdoc.wustl.edu/prospective-postdocs/ St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scenes. On top of it all, St. Louis is affordable and commuting to Washington University’s campuses is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities. Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Minimum education & experience The appointee will have earned a Master’s degree (for staff scientist) or Ph.D. (for postdoctoral associate or senior scientist) by the time of starting the appointment. Applicants should submit their CV, a cover letter explaining their background and interest in the position, and whether they are applying to the scientist or postdoctoral position, as well as 3 references to Dr. Yao Chen (yaochen@wustl.edu).

PositionNeuroscience

Dr. Michele Insanally

University of Pittsburgh
Pittsburgh, PA
Dec 21, 2025

The Insanally Lab is hiring postdocs to study the neural basis of auditory perception and learning. We incorporate a wide range of techniques including behavioral paradigms, in vivo multi-region neural recordings, optogenetics, chemogenetics, fiber photometry, and novel computational methods. Our lab is super supportive, collaborative, and we take mentoring seriously! Located at Pitt, our lab is part of a large systems neuroscience community that includes CNBC and CMU. For inquiries, feel free to reach out to me here: mni@pitt.edu. To find out more about our work, visit Insanallylab.com

Position

Department of Integrative Biology and Physiology

University of California Los Angeles
Los Angeles, CA
Dec 21, 2025

Assistant Professor

Position

Dr. Peter Petersen

Department of Neuroscience, University of Copenhagen
Copenhagen
Dec 21, 2025

We are seeking a highly motivated postdoctoral fellow for a project addressing the generation and functions of theta oscillations in spatial navigation using systems neuroscience and population-level approaches. The research will take place at the Department of Neuroscience (in.ku.dk) at University of Copenhagen in the lab of Dr. Peter C. Petersen (PetersenLab.org). The project involves performing electrophysiological recordings from freely moving animals using chronically implanted high-density Neuropixels silicon probes and applying optogenetics for single cell tagging, and behavioral manipulations. Learn more about the position and the application process here: https://employment.ku.dk/faculty/?show=157309

Position

Assistant Professor Peter Petersen

Neuroscience Department at University of Copenhagen
Copenhagen
Dec 21, 2025

We are seeking a highly motivated postdoctoral fellow for a project addressing the generation and functions of theta oscillations in spatial navigation using systems neuroscience and population-level approaches. The research will take place at the Department of Neuroscience (in.ku.dk) at University of Copenhagen in the lab of Dr. Peter C. Petersen (PetersenLab.org). The project involves performing electrophysiological recordings from freely moving animals using chronically implanted high-density Neuropixels silicon probes and applying optogenetics for single cell tagging, and behavioral manipulations. Learn more about the position and the application process here: https://employment.ku.dk/faculty/?show=157309

Position

Pascal Fries

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society
Frankfurt, Germany
Dec 21, 2025

The Fries Lab at the Ernst Strüngmann Institute (ESI) in Frankfurt is looking for an enthusiastic post-doctoral fellow, who is interested in studying the functional roles of brain rhythms and their synchronization in awake behaving marmosets. Behavior and the underlying cognitive functions rely on the dynamic communication between brain areas, a central topic of the lab (e.g. Bastos et al., Neuron, 2015; Rohenkohl et al., Neuron, 2018; Vezoli et al., Neuron, 2021). The postdoc will study this using electrophysiological recordings, potentially combined with functional Ultrasound (fUSI) and/or optogenetic stimulation. The postdoc will be able to use an outstanding infrastructure, and will join an existing international team with expertise in non-human primate research, including marmosets (Jendritza et al., eNeuro, 2021; Jendritza et al., bioRxiv, 2021). For details on the institute and the lab, see: https://www.esi-frankfurt.de/people/pascalfries/ The position is for three years initially, with the possibility of extension, and can start at any time in 2022 or 2023. This call will remain open until 15 September 2022.

Position

Prof. Carmen Varela

Florida Atlantic University
Jupiter, Florida, USA
Dec 21, 2025

Projects in the lab aim to discover biomarkers of sleep oscillations that correlate with memory consolidation and sleep quality. Sleep disruption is a common symptom of neurodegenerative disorders and is thought to be linked to their progression. Thalamocortical activity during sleep is critical for the contribution of sleep to memory consolidation, but it is not clear what oscillatory and cellular activity patterns relate to sleep quality and memory consolidation. The candidate will assist with administrative and scientific aspects of this project, using rats to investigate the patterns of thalamic activity that promote healthy sleep function. More generally, the lab uses state-of-the-art techniques to investigate the neural network mechanisms of cognitive behavior, with a focus on learning and memory and on the role of the neuronal circuits formed by the thalamus.

PositionNeuroscience

Dr. Rudy Behnia

Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
New York, NY
Dec 21, 2025

The Behnia Lab, is seeking to hire a Postdoctoral Research Scientist to assist with studies on how our brains see the world around us. The overarching goal of the lab is to define the processing steps that transform light signals in photoreceptors into feature of a visual scene such as color or direction of motion. For a given visual feature, we aim to describe not only the underlying mathematic operations (algorithms) that govern a transformation, but also the neural circuits that implement these. We make extensive use of connectomics data, as well as the abundant genetic tools available in fruit flies, and collaborate extensively with theorist to build biologically constrained models of perception. We are also interested in understanding how different internal/environmental states or other sensory systems influence the visual perception and how multisensory representations are used for higher cognitive functions such as learning and navigation. We invite to you review our website for more details about our work: http://behnialab.neuroscience.columbia.edu. Example projects include: 1/ A multidisciplinary collaboration with the laboratory of Ashok Litwin-Kumar at the Center for Theoretical Neuroscience, aimed at defining circuit mechanisms underlying multisensory learning, 2/ Investigating the role of neuromodulatory systems in color processing. Please contact Rudy Behnia directly at rb3161@columbia.edu for more details. The Behnia lab is part of the Columbia University’s Mortimer B. Zuckerman Mind Brain Behavior Institute (the Zuckerman Institute) brings together world-class researchers from varied scientific disciplines to explore aspects of mind and brain, through the exchange of ideas and active collaboration. The Zuckerman Institute’s home, the Jerome L. Greene Science Center is a state-of-the-art facility on Columbia’s Manhattanville campus. Situated in the heart of Manhattan in New York City, the Zuckerman Institute houses over 50 laboratories employing a broad range of interdisciplinary approaches to transform our understanding of the mind and brain. In this highly collaborative environment, experimental, computational, and theoretical labs work together to gain critical insights into how the brain develops, performs, endures and recovers. The Zuckerman Institute provides multiple levels of support for postdoctoral researchers (https://zuckermaninstitute.columbia.edu/postdocs). The Postdoc Program provides postdocs with an enriched research environment to advance their scientific training and support their professional growth. This includes frameworks to build a professional network of mentors and peers, through the personal board of advisors, as well as leadership opportunities, workshops and opportunities for public engagement. The Behnia lab strives to provide a supportive environment where creativity, independence, work/life balance are valued. We are strong advocates of diversity, equality, inclusion and belonging. We encourage application from applicants from diverse backgrounds. Prior experience in quantitative analysis of neuronal recordings and/or behavior and related programming skills (Python, version control, databases) are required. Prior expertise with in vivo imaging, electrophysiological recordings or behavioral studies, as well as superior motivation, drive and demonstrated aptitude for carrying out independent research are highly desirable qualifications. In addition, the ideal candidate would seek to work in a highly diverse and collaborative environment.

PositionNeuroscience

Dr. Rudy Behnia

Mortimer B. Zuckerman Mind Brain Behavior Institute
New York City, NY
Dec 21, 2025

The Behnia Lab, is seeking to hire a Postdoctoral Research Scientist to assist with studies on how our brains see the world around us. The overarching goal of the lab is to define the processing steps that transform light signals in photoreceptors into feature of a visual scene such as color or direction of motion. For a given visual feature, we aim to describe not only the underlying mathematic operations (algorithms) that govern a transformation, but also the neural circuits that implement these. We make extensive use of connectomics data, as well as the abundant genetic tools available in fruit flies, and collaborate extensively with theorist to build biologically constrained models of perception. We are also interested in understanding how different internal/environmental states or other sensory systems influence the visual perception and how multisensory representations are used for higher cognitive functions such as learning and navigation. We invite to you review our website for more details about our work: http://behnialab.neuroscience.columbia.edu. Example projects include: 1/ A multidisciplinary collaboration with the laboratory of Ashok Litwin-Kumar at the Center for Theoretical Neuroscience, aimed at defining circuit mechanisms underlying multisensory learning, 2/ Investigating the role of neuromodulatory systems in color processing. Please contact Rudy Behnia directly at rb3161@columbia.edu for more details. The Behnia lab is part of the Columbia University’s Mortimer B. Zuckerman Mind Brain Behavior Institute (the Zuckerman Institute) brings together world-class researchers from varied scientific disciplines to explore aspects of mind and brain, through the exchange of ideas and active collaboration. The Zuckerman Institute’s home, the Jerome L. Greene Science Center is a state-of-the-art facility on Columbia’s Manhattanville campus. Situated in the heart of Manhattan in New York City, the Zuckerman Institute houses over 50 laboratories employing a broad range of interdisciplinary approaches to transform our understanding of the mind and brain. In this highly collaborative environment, experimental, computational, and theoretical labs work together to gain critical insights into how the brain develops, performs, endures and recovers. The Zuckerman Institute provides multiple levels of support for postdoctoral researchers (https://zuckermaninstitute.columbia.edu/postdocs). The Postdoc Program provides postdocs with an enriched research environment to advance their scientific training and support their professional growth. This includes frameworks to build a professional network of mentors and peers, through the personal board of advisors, as well as leadership opportunities, workshops and opportunities for public engagement. The Behnia lab strives to provide a supportive environment where creativity, independence, work/life balance are valued. We are strong advocates of diversity, equality, inclusion and belonging. We encourage application from applicants from diverse backgrounds.

Position

Dr. Jasper Poort, Prof. Ole Paulsen, Prof. Jeff Dalley, Dr. Steve Sawiak

University of Cambridge, Department of Physiology, Development and Neuroscience
Cambridge, United Kingdom
Dec 21, 2025

Applications are invited for two Postdoctoral Research Associate positions to study GABAergic mechanisms in mouse visual learning. One will primarily focus on measuring GABA using magnetic resonance spectroscopy and will be based in the laboratories of Professor Jeff Dalley (Dept. Psychology) and Dr Stephen Sawiak (Innes building, West Cambridge), the other will primarily focus on measuring GABA using recently developed genetically encoded GABA sensors with 2P microscopy and will be based in the laboratories of Professor Ole Paulsen and Dr Jasper Poort (both Department of Physiology, Development and Neuroscience) at the University of Cambridge. Both post holders will interact closely with each other and other members of the consortium. The successful candidates will investigate the role of GABAergic interneurons in visual learning. The project will combine MRS-GABA, two-photon GABA and calcium imaging, electrophysiology, optogenetic and pharmacological manipulation of cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice learn visual decision-making tasks. Applicants should have completed (or be about to submit) a PhD (Research Associate) or (under)graduate degree (Research Assistant) in neuroscience, biology, experimental psychology, engineering or other relevant disciplines. We are looking for someone with previous experience in imaging/electrophysiology/optogenetics/pharmacology and behavioural training in rodents, and strong data analysis skills (e.g. Matlab or Python). The positions are available from January 2022 onwards for an initial two year period with the possibility for extension. For more information about the labs see: https://www.bio.cam.ac.uk/facilities/imaging/transneuro , https://noggin.pdn.cam.ac.uk/ and https://www.pdn.cam.ac.uk/svl/. In addition to the cover letter, CV and contact details of two referees, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the role of cortical inhibition in visual learning and their future research ambitions. The research is part of a new Wellcome Trust funded Collaborative award that brings together a cross-disciplinary team of international experts to investigate the role of GABAergic inhibition in learning. The programme bridges work across species (mice, humans) and scales (local circuits, global networks) and capitalises on cutting-edge methodological developments in our team: a) human/animal ultra high-field MR Spectroscopy and functional brain imaging (Emir lab, Purdue; Kourtzi and Sawiak labs, Cambridge), b) neuroengineering tools including optical GABA sensors (Looger lab: UCSD) and electrophoretic drug delivery (Malliaras lab, Cambridge), cellular imaging, optogenetics, electrophysiology, neuropharmacology (Paulsen, Dalley, Poort labs, Cambridge; Rusakov lab: UCL). This network provides unique opportunities for cross-disciplinary training in innovative animal and human neuroscience methodologies, neurotechnology and computational science. Successful applicants will be integrated in a diverse collaborative team and have the opportunity to participate in workshops and exchange visits across labs to facilitate cross-disciplinary training and collaborative working. Apply here: https://www.jobs.cam.ac.uk/job/32553/ Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk), Ole Paulsen (op210@cam.ac.uk), Jeff Dalley (jwd20@cam.ac.uk) and MR physicist Steve Sawiak (sjs80@cam.ac.uk).

Position

Dr. Jasper Poort

University of Cambridge
Cambridge, United Kingdom
Dec 21, 2025

Applications are invited for a postdoctoral research associate to study visual learning and attention brain circuits in mice. The post is based in the lab of Dr Jasper Poort in the Department of Physiology, Development and Neuroscience at the University of Cambridge. The successful candidate will work on a research project funded by the Wellcome Trust that will investigate the neural circuit mechanisms of visual learning and attention (see Poort et al., Neuron 2015, Khan et al, Nature Neuroscience 2018, Poort et al, Neuron 2021). The project combines two-photon calcium imaging, electrophysiology and optogenetic manipulation of different cell types and neural projections in visual cortical areas and decision-making brain areas to understand how mice (including mouse models of neurodevelopmental disorders) learn to become experts in different visually-guided decision-making tasks and flexibly switch attention between tasks. The successful applicant will join a supportive and multi-disciplinary research environment and collaborate with experts on learning and attention in rodents and humans, experts on learning and attention impairments in mental disorders, and computational neuroscientists. Applicants should have completed (or are about to submit) a PhD (research associate) or (under)graduate degree (research assistant) in neuroscience, biology, engineering, or other relevant disciplines. We are looking for someone with previous experience in two-photon imaging/electrophysiology/optogenetics/pharmacology/histology and behavioural training in mice, and strong data analysis skills (e.g. Matlab or Python). The research position is available from Feb 2022 onwards for an initial 2 year period with the possibility for extension. For more information about the lab see https://www.pdn.cam.ac.uk/svl/. Apply here: https://www.jobs.cam.ac.uk/job/32860/ In addition to the cover letter, CV, and contact details of 2 references, applicants are asked to provide a brief statement (500 words) describing the questions and approach they consider important for the study of the neural circuits for learning and attention in mice and their future research ambitions. The closing date for applications is 15th January 2022. Informal enquiries about the position can be made to Jasper Poort (jp816@cam.ac.uk). References: Poort, Wilmes,Chadwick, Blot, Sahani, Clopath, Mrsic-Flogel, Hofer, Khan (2021). Learning and attention increase neuronal response selectivity in mouse primary visual cortex through distinct mechanisms. Neuron https://doi.org/10.1016/j.neuron.2021.11.016 Khan, Poort, Chadwick, Blot, Sahani, Mrsic-Flogel, Hofer (2018). Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nature Neuroscience https://doi.org/10.1038/s41593-018-0143-z Poort, Khan, Pachitariu, Nemri, Orsolic, Krupic, Bauza, Sahani, Keller, Mrsic-Flogel, Hofer (2015). Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron https://doi.org/10.1016/j.neuron.2015.05.037

Position

Terufumi Fujiwara

Riken
Saitama, Japan
Dec 21, 2025

My lab will investigate neural mechanisms of motor control in Drosophila by combining neurophysiology, behavior, engineering, genetics, and quantitative analysis.

Position

SISSA cognitive neuroscience PhD

International School for Advanced Studies (SISSA)
Trieste
Dec 21, 2025

Up to 2 PhD positions in Cognitive Neuroscience are available at SISSA, Trieste, starting October 2024. SISSA is an elite postgraduate research institution for Maths, Physics and Neuroscience, located in Trieste, Italy. SISSA operates in English, and its faculty and student community is diverse and strongly international. The Cognitive Neuroscience group (https://phdcns.sissa.it/) hosts 6 research labs that study the neuronal bases of time and magnitude processing, visual perception, motivation and intelligence, language, tactile perception and learning, and neural computation. Our research is highly interdisciplinary; our approaches include behavioural, psychophysics, and neurophysiological experiments with humans and animals, as well as computational, statistical and mathematical models. Students from a broad range of backgrounds (physics, maths, medicine, psychology, biology) are encouraged to apply. The selection procedure is now open. The application deadline is 27 August 2024. Please apply here (https://www.sissa.it/bandi/ammissione-ai-corsi-di-philosophiae-doctor-posizioni-cofinanziate-dal-fondo-sociale-europeo), and see the admission procedure page (https://phdcns.sissa.it/admission-procedure) for more information. Note that the positions available for the Fall admission round are those funded by the "Fondo Sociale Europeo Plus", accessible through the first link above. Please contact the PhD Coordinator Mathew Diamond (diamond@sissa.it) and/or your prospective supervisor for more information and informal inquiries.

SeminarNeuroscience

Consciousness at the edge of chaos

Martin Monti
University of California Los Angeles
Dec 13, 2025

Over the last 20 years, neuroimaging and electrophysiology techniques have become central to understanding the mechanisms that accompany loss and recovery of consciousness. Much of this research is performed in the context of healthy individuals with neurotypical brain dynamics. Yet, a true understanding of how consciousness emerges from the joint action of neurons has to account for how severely pathological brains, often showing phenotypes typical of unconsciousness, can nonetheless generate a subjective viewpoint. In this presentation, I will start from the context of Disorders of Consciousness and will discuss recent work aimed at finding generalizable signatures of consciousness that are reliable across a spectrum of brain electrophysiological phenotypes focusing in particular on the notion of edge-of-chaos criticality.

SeminarNeuroscience

Unpacking the role of the medial septum in spatial coding in the medial entorhinal cortex

Jennifer Robinson
McGill University
Sep 11, 2025
SeminarNeuroscienceRecording

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala

Kenneth Hayworth
Carboncopies Foundation & BPF Aspirational Neuroscience
Apr 22, 2025

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.

SeminarNeuroscience

Mouse Motor Cortex Circuits and Roles in Oromanual Behavior

Gordon Shepherd
Northwestern University
Jan 14, 2025

I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In one line of investigation, we take a bottom-up, cellularly oriented approach and use optogenetics, electrophysiology, and related slice-based methods to dissect cell-type-specific circuits of corticospinal and other neurons in forelimb motor cortex. In another, we take a top-down ethologically oriented approach and analyze the kinematics and cortical correlates of “oromanual” dexterity as mice handle food. I'll discuss recent progress on both fronts.

SeminarNeuroscienceRecording

Combined electrophysiological and optical recording of multi-scale neural circuit dynamics

Chris Lewis
University of Zurich
Apr 30, 2024

This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.

SeminarNeuroscienceRecording

Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities; Spatial filtering to enhance signal processing in invasive neurophysiology

Wolf-Julian Neumann, MD & Prof. Victoria Peterson, PhD
Charité – Universitätsmedizin Berlin, Germany / IMAL-UNL-CONICET, Sata Fe, Argentinia
Feb 15, 2024

On Thursday February 15th, we will host Victoria Peterson and Julian Neumann. Victoria will tell us about “Spatial filtering to enhance signal processing in invasive neurophysiology”. Besides his scientific presentation on “Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities”, Julian will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. Note: The talks will exceptionally be held at 10 ET / 4PM CET. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

State-of-the-Art Spike Sorting with SpikeInterface

Samuel Garcia and Alessio Buccino
CRNS, Lyon, France and Allen Institute for Neural Dynamics, Seattle, USA
Nov 7, 2023

This webinar will focus on spike sorting analysis with SpikeInterface, an open-source framework for the analysis of extracellular electrophysiology data. After a brief introduction of the project (~30 mins) highlighting the basics of the SpikeInterface software and advanced features (e.g., data compression, quality metrics, drift correction, cloud visualization), we will have an extensive hands-on tutorial (~90 mins) showing how to use SpikeInterface in a real-world scenario. After attending the webinar, you will: (1) have a global overview of the different steps involved in a processing pipeline; (2) know how to write a complete analysis pipeline with SpikeInterface.

SeminarNeuroscience

Consolidation of remote contextual memory in the neocortical memory engram

Jun-Hyeong Cho
Oct 26, 2023

Recent studies identified memory engram neurons, a neuronal population that is recruited by initial learning and is reactivated during memory recall.  Memory engram neurons are connected to one another through memory engram synapses in a distributed network of brain areas.  Our central hypothesis is that an associative memory is encoded and consolidated by selective strengthening of engram synapses.  We are testing this hypothesis, using a combination of engram cell labeling, optogenetic/chemogenetic, electrophysiological, and virus tracing approaches in rodent models of contextual fear conditioning.  In this talk, I will discuss our findings on how synaptic plasticity in memory engram synapses contributes to the acquisition and consolidation of contextual fear memory in a distributed network of the amygdala, hippocampus, and neocortex.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 27, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 31, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscience

The balanced brain: two-photon microscopy of inhibitory synapse formation

Corette Wierenga
Donders Institute
May 11, 2023

Coordination between excitatory and inhibitory synapses (providing positive and negative signals respectively) is required to ensure proper information processing in the brain. Many brain disorders, especially neurodevelopental disorders, are rooted in a specific disturbance of this coordination. In my research group we use a combination of two-photon microscopy and electrophisiology to examine how inhibitory synapses are fromed and how this formation is coordinated with nearby excitatroy synapses.

SeminarNeuroscience

Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation

Mark Buckley
Oxford University
May 5, 2023

Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.

SeminarNeuroscienceRecording

More than a beast growing in a passive brain: excitation and inhibition drive epilepsy and glioma progression

Gilles Huberfeld
Hôpital Fondation Adolphe de Rothschild
Apr 12, 2023

Gliomas are brain tumors formed by networks of connected tumor cells, nested in and interacting with neuronal networks. Neuronal activities interfere with tumor growth and occurrence of seizures affects glioma prognosis, while the developing tumor triggers seizures in the infiltrated cortex. Oncometabolites produced by tumor cells and neurotransmitters affect both the generation of epileptic activities by neurons and the growth of glioma cells through synaptic-related mechanisms, involving both GABAergic / Chloride pathways and glutamatergic signaling. From a clinical sight, epilepsy occurrence is beneficial to glioma prognosis but growing tumors are epileptogenic, which constitutes a paradox. This lecture will review how inhibitory and excitatory signaling drives glioma growth and how epileptic and oncological processes are interfering, with a special focus on the human brain.

SeminarNeuroscience

A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation

Malcolm Campbell
Harvard
Mar 9, 2023

During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.

SeminarNeuroscienceRecording

Prox2+ and Runx3+ vagal sensory neurons regulate esophageal motility

Elijah Lowenstein
Birchmeier lab, Max Delbrück Center
Mar 1, 2023

Sensory neurons of the vagus nerve monitor distention and stretch in the gastrointestinal tract. We used genetically guided anatomical tracing, optogenetics and electrophysiology to identify and characterize two vagal sensory neuronal subtypes expressing Prox2 and Runx3. We show that these neuronal subtypes innervate the esophagus where they display regionalized innervation patterns. Electrophysiological analyses showed that they are both low threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis and swallowing in freely behaving animals. Our work reveals the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.

SeminarNeuroscienceRecording

Silences, Spikes and Bursts: Three-Part Knot of the Neural Code

Richard Naud
University of Ottawa
Mar 1, 2023

When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labeling action potentials emitted at a particularly high frequency with a metonym – bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. In this talk, I will discuss the implications of seeing the neural code as having three syllables: silences, spikes and bursts. In particular, I will describe recent theoretical and experimental results that implicate bursting in the implementation of top-down attention and the coordination of learning.

SeminarNeuroscience

Baby steps to breakthroughs in precision health in neurodevelopmental disorders

Shafali Spurling Jeste
Children's Hospital Los Angeles
Oct 26, 2022
SeminarNeuroscience

High capacity electrophysiology: Lots more data, problematic analysis

Tim Harris
Janelia Research Campus, U.S.A
Sep 30, 2022
SeminarNeuroscience

Multi-level theory of neural representations in the era of large-scale neural recordings: Task-efficiency, representation geometry, and single neuron properties

SueYeon Chung
NYU/Flatiron
Sep 16, 2022

A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of representations in neural circuits. In this talk, we will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from the structure in neural populations and from biologically plausible neural networks. First, we will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes a perceptron’s capacity for linearly classifying object categories based on the underlying neural manifolds’ structural properties. Next, we will describe how such methods can, in fact, open the ‘black box’ of distributed neuronal circuits in a range of experimental neural datasets. In particular, our method overcomes the limitations of traditional dimensionality reduction techniques, as it operates directly on the high-dimensional representations, rather than relying on low-dimensionality assumptions for visualization. Furthermore, this method allows for simultaneous multi-level analysis, by measuring geometric properties in neural population data, and estimating the amount of task information embedded in the same population. These geometric frameworks are general and can be used across different brain areas and task modalities, as demonstrated in the work of ours and others, ranging from the visual cortex to parietal cortex to hippocampus, and from calcium imaging to electrophysiology to fMRI datasets. Finally, we will discuss our recent efforts to fully extend this multi-level description of neural populations, by (1) investigating how single neuron properties shape the representation geometry in early sensory areas, and by (2) understanding how task-efficient neural manifolds emerge in biologically-constrained neural networks. By extending our mathematical toolkit for analyzing representations underlying complex neuronal networks, we hope to contribute to the long-term challenge of understanding the neuronal basis of tasks and behaviors.

SeminarNeuroscience

New Insights into the Neural Machinery of Face Recognition

Winrich Freiwald
Rockefeller
Jul 12, 2022
SeminarNeuroscience

Imperial Neurotechnology 2022 - Annual Research Symposium

Marcus Kaiser, Sarah Marzi, Giuseppe Gava, Gema Vera Gonzalez, Matteo Vinao-Carl, Sihao Lu, Hayriye Cagnan
Nottingham University, Imperial College, University of Oxford
Jul 5, 2022

A diverse mix of neurotechnology talks and posters from researchers at Imperial and beyond. Visit our event page to find out more. The event is in-person but talk sessions will be broadcast via Teams.

SeminarNeuroscienceRecording

Pynapple: a light-weight python package for neural data analysis - webinar + tutorial

Adrien Peyrache and Guillaume Viejo
McGill University, Canada
Jun 29, 2022

In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.

SeminarNeuroscienceRecording

Pynapple: a light-weight python package for neural data analysis - webinar + tutorial

Adrien Peyrache and Guillaume Viejo
McGill University, Canada
Jun 28, 2022

In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
Jun 1, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarNeuroscienceRecording

Modularity and Robustness of Frontal Cortical Networks

Nuo Li
Baylor College of Medicine, USA
May 24, 2022

Nuo Li (Baylor College of Medicine, USA) shares novel insights into coordinated interhemispheric large-scale neural network activity underpinning short-term memory in mice. Relevant techniques covered include: simultaneous multi-regional recordings using multiple 64-channel H probes during head-fixed behavior in mice. simultaneous optogenetics and population recording. analysis of population recordings to infer interactions between brain regions. Reference: Chen G, Kang B, Lindsey J, Druckmann S, Li N, (2021). Modularity and robustness of frontal cortex networks. Cell, 184(14):3717-3730.

SeminarNeuroscience

Neural Representations of Social Homeostasis

Kay M. Tye
HHMI Investigator, and Wylie Vale Chair, The Salk Institute for Biological Studies, SNL-KT
May 17, 2022

How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviors ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviors. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behavior.

SeminarNeuroscience

What does time of day mean for vision?

Annette Allen
University of Manchester (UK)
May 5, 2022

Profound changes in the visual environment occur over the course of the day-night cycle. There is therefore a profound pressure for cells and circuits within the visual system to adjust their function over time, to match the prevailing visual environment. Here, I will discuss electrophysiological data collected from nocturnal and diurnal rodents that reveal how the visual code is ‘temporally optimised’ by 1) the retina’s circadian clock, and 2) a change in behavioural temporal niche.

SeminarOpen SourceRecording

Open-source neurotechnologies for imaging cortex-wide neural activity in behaving animals

Suhasa Kodandaramaiah
University of Minnesota
May 4, 2022

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (+300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

SeminarNeuroscience

Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2

Heather Snell
Albert Einstein Medical College
Apr 27, 2022

Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.

SeminarNeuroscienceRecording

Cortex-dependent corrections as the mouse tongue reaches for and misses targets

Brendan Ito & Teja Bollu
Cornell University, USA & Salk Institute, USA
Apr 20, 2022

Brendan Ito (Cornell University, USA) and Teja Bollu (Salk Institute, USA) share unique insights into rapid online motor corrections during mouse licking, analogous to primate goal-oriented reaching. Techniques covered include large-scale single unit recording during behaviour with optogenetics, and a deep-learning-based neural network to resolve 3D tongue kinematics during licking.

SeminarNeuroscienceRecording

Sensing in Insect Wings

Ali Weber
University of Washington, USA
Apr 19, 2022

Ali Weber (University of Washington, USA) uses the the hawkmoth as a model system, to investigate how information from a small number of mechanoreceptors on the wings are used in flight control. She employs a combination of experimental and computational techniques to study how these sensors respond during flight and how one might optimally array a set of these sensors to best provide feedback during flight.

SeminarNeuroscience

2nd In-Vitro 2D & 3D Neuronal Networks Summit

Dr. Manuel Schröter, Dr. David Pamies, Dr. Silvia Ronchi, Jens Duru, Dr. Hideaki Yamamoto, Xiaohan Xue, Danny McSweeney, Dr. Katherine Czysz, Dr. Maria Sundberg
Apr 7, 2022

The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.

SeminarNeuroscience

2nd In-Vitro 2D & 3D Neuronal Networks Summit

Prof. Dr. Nael Nadif Kasri, Prof. Dr. Naihe Jing, Prof. Dr. Bastian Hengerer, Prof. Dr. Janos Vörös, Dr. Bruna Paulsen, Dr. Annina Denoth-Lippuner, Dr, Jessica Sevetson, Prof. Dr. Kenneth Kosik
Apr 6, 2022

The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.

SeminarNeuroscience

The french roots of electrophysiology

Gabriel Finkelstein
Mar 25, 2022

This talk looks at the subject of my biography, the German physiologist Emil du Bois-Reymond (1818–1896). With respect to his philosophy of biological reduction, his methods of electrophysiological experiment, and his co-discovery of the action potential, du Bois-Reymond is generally considered one of the founders of neuroscience. Less well known are the origins of his innovation: French writers shaped his outlook on science, just as French scientists shaped his practice in the laboratory. I contend that du Bois-Reymond’s originality is the product of his synthesis of French traditions with German concerns.

SeminarNeuroscienceRecording

NaV Long-term Inactivation Regulates Adaptation in Place Cells and Depolarization Block in Dopamine Neurons

Carmen Canavier
LSU Health Sciences Center, New Orleans
Feb 9, 2022

In behaving rodents, CA1 pyramidal neurons receive spatially-tuned depolarizing synaptic input while traversing a specific location within an environment called its place. Midbrain dopamine neurons participate in reinforcement learning, and bursts of action potentials riding a depolarizing wave of synaptic input signal rewards and reward expectation. Interestingly, slice electrophysiology in vitro shows that both types of cells exhibit a pronounced reduction in firing rate (adaptation) and even cessation of firing during sustained depolarization. We included a five state Markov model of NaV1.6 (for CA1) and NaV1.2 (for dopamine neurons) respectively, in computational models of these two types of neurons. Our simulations suggest that long-term inactivation of this channel is responsible for the adaptation in CA1 pyramidal neurons, in response to triangular depolarizing current ramps. We also show that the differential contribution of slow inactivation in two subpopulations of midbrain dopamine neurons can account for their different dynamic ranges, as assessed by their responses to similar depolarizing ramps. These results suggest long-term inactivation of the sodium channel is a general mechanism for adaptation.

SeminarNeuroscienceRecording

Norepinephrine links astrocytic activity to regulation of cortical state

Michael Reitman
Poskanzer Lab, UCSF
Jan 26, 2022

Cortical state, defined by the synchrony of population-level neuronal activity, is a key determinant of sensory perception. While many arousal-associated neuromodulators—including norepinephrine (NE)—reduce cortical synchrony, how the cortex resynchronizes following NE signaling remains unknown. Using in vivo two-photon imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes’ sensitive calcium responses to changes in behavioral arousal and NE, identify that astrocyte signaling precedes increases in cortical synchrony, and demonstrate that astrocyte-specific deletion of Adra1A alters arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.

SeminarNeuroscienceRecording

Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex

Alexander Attinger
Giocomo lab, Stanford University
Jan 12, 2022

During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains incompletely understood. We combine electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC), and medial entorhinal cortex (MEC). Compared with V1 and RSC, path integration influences position estimates more in MEC, and conflicts between path integration and landmarks trigger remapping more readily. Whereas MEC codes position prospectively, V1 codes position retrospectively, and RSC is intermediate between the two. Lowered visual contrast increases the influence of path integration on position estimates only in MEC. These properties are most pronounced in a population of MEC neurons, overlapping with grid cells, tuned to distance run in darkness. These results demonstrate the specialized role that path integration plays in MEC compared with other navigation-relevant cortical areas.

SeminarNeuroscience

Networking—the key to success… especially in the brain

Alexander Dunn
University of Cambridge, DAMTP
Nov 17, 2021

In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.

SeminarOpen SourceRecording

The Open-Source UCLA Miniscope Project

Daniel Aharoni
University of California, Los Angeles
Oct 27, 2021

The Miniscope Project -- an open-source collaborative effort—was created to accelerate innovation of miniature microscope technology and to increase global access to this technology. Currently, we are working on advancements ranging from optogenetic stimulation and wire-free operation to simultaneous optical and electrophysiological recording. Using these systems, we have uncovered mechanisms underlying temporal memory linking and investigated causes of cognitive deficits in temporal lobe epilepsy. Through innovation and optimization, this work aims to extend the reach of neuroscience research and create new avenues of scientific inquiry.

SeminarNeuroscienceRecording

Top-down modulation of the retinal code via histaminergic neurons in the hypothalamus

Michal Rivlin
Weismann Institute
Oct 18, 2021

The mammalian retina is considered an autonomous neuronal tissue, yet there is evidence that it receives inputs from the brain in the form of retinopetal axons. A sub-population of these axons was suggested to belong to histaminergic neurons located in the tuberomammillarynucleus (TMN) of the hypothalamus. Using viral injections to the TMN, we identified these retinopetal axons and found that although few in number, they extensively branch to cover a large portion of the retina. Using Ca2+ imaging and electrophysiology, we show that histamine application increases spontaneous firing rates and alters the light responses of a significant portion of retinal ganglion cells (RGCs). Direct activation of the histaminergic axons also induced significant changes in RGCs activity. Since activity in the TMN was shown to correlate with arousal state, our data suggest the retinal code may change with the animal's behavioral state through the release of histamine from TMN histaminergic neurons.

SeminarNeuroscience

Synaptic health in Parkinson's Disease

Dayne Beccano-Kelly
Cardiff University
Aug 12, 2021

Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of over 65's; there is currently no effective treatment. Dopaminergic neuronal loss is hallmark in PD and yet despite decades of intensive research there is still no known therapeutic which will completely halt the disorder. As a result, identification of interventive therapies to reverse or prevent PD are essential. Using genetically faithful models (induced pluripotent stem cells and knock-in mice) of familial late onset PD (LRRK2 G2019S and GBA N370S) we have contributed to the literature that neuronal dysfunction precedes degeneration. Specifically, using whole cell patch clamp electrophysiology, biochemical, behavioural and molecular biological techniques, we have begun to investigate the fundamental processes that make neurons specialised i.e., synaptic function and neurotransmission. We illustrate those alterations to spontaneous neurotransmitter release, neuronal firing, and short-term plasticity as well as Ca2+ and energy dyshomeostasis, are some of the earliest observable pathological dysfunctions and are likely precursors to late-stage degeneration. These pathologies represent targets which can be manipulated to address causation, rather than the symptoms of the PD, and represent a marker that, if measurable in patients, could form the basis of early PD detection and intervention.

SeminarNeuroscience

A brain circuit for curiosity

Mehran Ahmadlou
Netherlands Institute for Neuroscience
Jul 12, 2021

Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.

SeminarNeuroscienceRecording

“From the Sublime to the Stomatopod: the story from beginning to nowhere near the end.”

Justin Marshall
University of Queensland
Jul 12, 2021

“Call me a marine vision scientist. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see what animals see in the watery part of the world. It is a way I have of dividing off the spectrum, and regulating circular polarisation.” Sometimes I wish I had just set out to harpoon a white whale as it would have been easier than studying stomatopod (mantis shrimp) vision. Nowhere near as much fun of course and certainly less dangerous so in this presentation I track the history of discovery and confusion that stomatopods deliver in trying to understand what the do actually see. The talk unashamedly borrows from that of Mike Bok a few weeks ago (April 13th 2021 “The Blurry Beginnings: etc” talk) as an introduction to the system (do go look at his talk again, it is beautiful!) and goes both backwards and forwards in time, trying to provide an explanation for the design of this visual system. The journey is again one of retinal anatomy and physiology, neuroanatomy, electrophysiology, behaviour and body ornaments but this time focusses more on polarisation vision (Mike covered the colour stuff well). There is a comparative section looking at the cephalopods too and by the end, I hope you will understand where we are at with trying to understand this extraordinary way of seeing the world and why we ‘pod-people’ wave our arms around so much when asked to explain; what do stomatopods see? Maybe, to butcher another quote: “mantis shrimp have been rendered visually beautiful for vision’s sake.”

SeminarNeuroscienceRecording

Imperial Neurotechnology 2021 - Annual Research Symposium

Yulong Li, Christos Kapatos, Mary Ann Go, Sonja Hofer, Oscar Bates, Christian Wilms
Peking University, SERG Technologies, Imperial College, UCL, Scientifica Ltd
Jul 7, 2021

A diverse mix of neurotechnology talks from academic and industry colleagues plus presentations from our MRes Neurotechnology students. Visit our event page to find out more and register now!

SeminarOpen SourceRecording

Open-source tools for systems neuroscience

Jakob Voigts
MIT and Open Ephys
Jun 25, 2021

Open-source tools are gaining an increasing foothold in neuroscience. The rising complexity of experiments in systems neuroscience has led to a need for multiple parts of experiments to work together seamlessly. This means that open-source tools that freely interact with each other and can be understood and modified more easily allow scientists to conduct better experiments with less effort than closed tools. Open Ephys is an organization with team members distributed all around the world. Our mission is to advance our understanding of the brain by promoting community ownership of the tools we use to study it. We are making and distributing cutting edge tools that exploit modern technology to bring down the price and complexity of neuroscience experiments. A large component of this is to take tools that were developed in academic labs and helping with documentation, support, and distribution. More recently, we have been working on bringing high-quality manufacturing, distribution, warranty, and support to open source tools by partnering with OEPS in Portugal. We are now also establishing standards that make it possible to combine methods, such as miniaturized microscopes, electrode drive implants, and silicon probes seamlessly in one system. In the longer term, our development of new tools, interfaces and our standardization efforts have the goal of making it possible for scientists to easily run complex experiments that span from complex behaviors and tasks, multiple recording modalities, to easy access to data processing pipelines.

SeminarPsychology

Investigating visual recognition and the temporal lobes using electrophysiology and fast periodic visual stimulation

Angelique Volfart
University of Louvain
Jun 24, 2021

The ventral visual pathway extends from the occipital to the anterior temporal regions, and is specialized in giving meaning to objects and people that are perceived through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in ventral anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream, especially with respect to face recognition and semantic representations. Moreover, there is an increasing need for implicit methods assessing these functions as explicit tasks lack specificity. In this talk, I will present three studies using fast periodic visual stimulation (FPVS) in combination with scalp and/or intracerebral EEG to overcome these limitations and provide high SNR in temporal regions. I will show that, beyond face recognition, FPVS can be extended to investigate semantic representations using a face-name association paradigm and a semantic categorisation paradigm with written words. These results shed new light on the role of temporal regions and demonstrate the high potential of the FPVS approach as a powerful electrophysiological tool to assess various cognitive functions in neurotypical and clinical populations.

SeminarNeuroscienceRecording

Technologies for large scale cortical imaging and electrophysiology

Suhasa Kodandaramaiah
University of Minnesota
Jun 22, 2021

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

SeminarNeuroscienceRecording

Assessing and improving vision restoration using ex vivo retina

Günther Zeck
EMCE Institute, TU Wien (Vienna University of Technology)
Jun 22, 2021
SeminarPsychology

Getting to know you: emerging neural representations during face familiarization

Gyula Kovács
Friedrich-Schiller University Jena
Jun 17, 2021

The successful recognition of familiar persons is critical for social interactions. Despite extensive research on the neural representations of familiar faces, we know little about how such representations unfold as someone becomes familiar. In three EEG experiments, we elucidated how representations of face familiarity and identity emerge from different qualities of familiarization: brief perceptual exposure (Experiment 1), extensive media familiarization (Experiment 2) and real-life personal familiarization (Experiment 3). Time-resolved representational similarity analysis revealed that familiarization quality has a profound impact on representations of face familiarity: they were strongly visible after personal familiarization, weaker after media familiarization, and absent after perceptual familiarization. Across all experiments, we found no enhancement of face identity representation, suggesting that familiarity and identity representations emerge independently during face familiarization. Our results emphasize the importance of extensive, real-life familiarization for the emergence of robust face familiarity representations, constraining models of face perception and recognition memory.

SeminarNeuroscienceRecording

GED: A flexible family of versatile methods for hypothesis-driven multivariate decompositions

Mike X Cohen
Donders Centre for Medical Neuroscience
Jun 16, 2021

Does that title put you to sleep or pique your interest? The goal of my presentation is to introduce a powerful yet under-utilized mathematical equation that is surprisingly effective at uncovering spatiotemporal patterns that are embedded in data -- but that might be inaccessible in traditional analysis methods due to low SNR or sparse spatial distribution. If you flunked calculus, then don't worry: the math is really easy, and I'll spend most of the time discussing intuition, simulations, and applications in real data. I will also spend some time in the beginning of the talk providing a bird's-eye-view of the empirical research in my lab, which focuses on mesoscale brain dynamics associated with error monitoring and response competition.

SeminarNeuroscienceRecording

Encoding local stimulus attributes and higher visual functions in V1 of behaving monkeys

Hamutal Slovin
Bar Ilan
Jun 15, 2021
SeminarOpen SourceRecording

SpikeInterface

Alessio Buccino
ETH Zurich
Jun 11, 2021

Much development has been directed toward improving the performance and automation of spike sorting. This continuous development, while essential, has contributed to an over-saturation of new, incompatible tools that hinders rigorous benchmarking and complicates reproducible analysis. To address these limitations, we developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to facilitate straightforward comparison and adoption of different approaches. With a few lines of code, researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. In this presentation, I will provide an overview of SpikeInterface and, with applications to real and simulated datasets, demonstrate how it can be utilized to reduce the burden of manual curation and to more comprehensively benchmark automated spike sorters.

SeminarNeuroscience

Capacitance clamp - artificial capacitance in biological neurons via dynamic clamp

Paul Pfeiffer
Schreiber lab, Humboldt University Berlin, Germany
Jun 10, 2021

A basic time scale in neural dynamics from single cells to the network level is the membrane time constant - set by a neuron’s input resistance and its capacitance. Interestingly, the membrane capacitance appears to be more dynamic than previously assumed with implications for neural function and pathology. Indeed, altered membrane capacitance has been observed in reaction to physiological changes like neural swelling, but also in ageing and Alzheimer's disease. Importantly, according to theory, even small changes of the capacitance can affect neuronal signal processing, e.g. increase network synchronization or facilitate transmission of high frequencies. In experiment, robust methods to modify the capacitance of a neuron have been missing. Here, we present the capacitance clamp - an electrophysiological method for capacitance control based on an unconventional application of the dynamic clamp. In its original form, dynamic clamp mimics additional synaptic or ionic conductances by injecting their respective currents. Whereas a conductance directly governs a current, the membrane capacitance determines how fast the voltage responds to a current. Accordingly, capacitance clamp mimics an altered capacitance by injecting a dynamic current that slows down or speeds up the voltage response (Fig 1 A). For the required dynamic current, the experimenter only has to specify the original cell and the desired target capacitance. In particular, capacitance clamp requires no detailed model of present conductances and thus can be applied in every excitable cell. To validate the capacitance clamp, we performed numerical simulations of the protocol and applied it to modify the capacitance of cultured neurons. First, we simulated capacitance clamp in conductance based neuron models and analysed impedance and firing frequency to verify the altered capacitance. Second, in dentate gyrus granule cells from rats, we could reliably control the capacitance in a range of 75 to 200% of the original capacitance and observed pronounced changes in the shape of the action potentials: increasing the capacitance reduced after-hyperpolarization amplitudes and slowed down repolarization. To conclude, we present a novel tool for electrophysiology: the capacitance clamp provides reliable control over the capacitance of a neuron and thereby opens a new way to study the temporal dynamics of excitable cells.

SeminarOpen SourceRecording

Kilosort

Marius Pachitariu
HHMI Janelia Research Campus
May 28, 2021

Kilosort is a spike sorting pipeline for large-scale electrophysiology. Advances in silicon probe technology mean that in vivo electrophysiological recordings from hundreds of channels will soon become commonplace. To interpret these recordings we need fast, scalable and accurate methods for spike sorting, whose output requires minimal time for manual curation. Kilosort is a spike sorting framework that meets these criteria, and show that it allows rapid and accurate sorting of large-scale in vivo data. Kilosort models the recorded voltage as a sum of template waveforms triggered on the spike times, allowing overlapping spikes to be identified and resolved. Rapid processing is achieved thanks to a novel low-dimensional approximation for the spatiotemporal distribution of each template, and to batch-based optimization on GPUs. Kilosort is an important step towards fully automated spike sorting of multichannel electrode recordings, and is freely available.

SeminarNeuroscienceRecording

Anatomical and functional characterization of the neuronal circuits underlying ejaculation

Constanze Lenschow
Lima lab, Champalimaud Centre for the Unknown
May 19, 2021

During sexual behavior, copulation related sensory information and modulatory signals from the brain must be integrated and converted into the motor and secretory outputs that characterize ejaculation (Lenschow and Lima, Current Opinion in Neurobiology, 2020). Studies in humans and rats suggest the existence of interneurons in the lumbar spinal cord that mediates that step: the spinal ejaculation generator (SEG). My work aimed at gaining mechanistic insights about the neuronal circuits controlling ejaculation thereby applying cutting-edge techniques. More specifically, we mapped anatomically and functionally the spinal circuit for ejaculation starting from the main muscle being involved in sperm expulsion: the bulbospongiosus muscle (BSM). Combining viral tracing strategies with electrophysiology, we specifically show that the BSM motoneurons receive direct synaptic input from a group of interneurons located in between lumbar segment 2 and 3 and expressing the peptide galanin. Electrically and optogenetically activating the galanin positive cells (the SEG) lead to the activation of the motoneurons innervating the BSM and the muscle itself. Finally, inhibition of SEG cells using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in sexual behaving animals is currently conducted to reveal whether ejaculation can be prevented.

ePoster

Robust multiband drift estimation in electrophysiology data

Charlie Windolf, Angelique C Paulk, Yoav Kfir, Eric Trautmann, Samuel Garcia, Domokos Meszéna, William Munoz, Irene Caprara, Mohsen Jamali, Julien Boussard, Ziv Williams, Sydney Cash, Liam Paninski, Erdem Varol

COSYNE 2023

ePoster

Combining electrophysiology, tissue clearing, and light sheet microscopy for an integrated approach towards brain circuit understanding

Sebastian Böhm, Marta Solano Mateos, James A. Oakes, Saiedeh Saghafi, Christoph F. Fuchssteiner, Thomas Klausberger, Hans-Ulrich Dodt

FENS Forum 2024

ePoster

Evaluating the spread of excitation with different types of optogenetic cochlear stimulation through computer simulations and in vivo electrophysiology

Elisabeth Koert, Jonathan Götz, Bettina Wolf, Tobias Moser

FENS Forum 2024

ePoster

Integrated electrophysiology and fiber photometry examination of the prefrontal cortex in the mouse model of implicit learning

Éva Gulyás, Vivien Pillár, Bálint Király, Franciska Benyó, Annamária Benke, Balázs Hangya

FENS Forum 2024

ePoster

Investigation of GABA transport and the GABA/Na+ relationship in human GAT1 using solid-supported membrane-based electrophysiology

Rocco Zerlotti, Elena Dragicevic, Maria Barthmes, Andre Bazzone

FENS Forum 2024

ePoster

Maternal separation modifies the stress sensitivity, electrophysiology, and morphology of rat nucleus incertus neurons

Anna Gugula, Patryk Sambak, Aleksandra Trenk, Sylwia Drabik, Aleksandra Nogaj, Zbigniew Soltys, Andrew L. Gundlach, Anna Blasiak

FENS Forum 2024

ePoster

MRI-visible superparamagnetic ultraflexible electrodes for precision electrophysiology

Eminhan Ozil, Peter Gombkoto, Tansel Baran Yasar, Angeliki Vavladeli, Markus Marks, Wolfger von der Behrens, Mehmet Fatih Yanik

FENS Forum 2024

ePoster

Navigating through the entorhinal cortex: Combining single-cell electrophysiology and RNA sequencing to advance our knowledge on the neuronal architecture

Eliška Waloschková, Attila Ozsvar, Wen-Hsien Hou, Konstantin Khodosevich, Martin Hemberg, Jan Gorodkin, Stefan Seemann, Vanessa Hall

FENS Forum 2024

ePoster

Next-generation electrophysiology for functional characterization of human neural organoids

Laura D'ignazio, Elvira Guella, Zhuoliang Li, Anastasiia Oryshchuk, Praveena Manogaran, Marie Engelene Obien

FENS Forum 2024

ePoster

Simultaneous calcium imaging and extracellular electrophysiology using CMOS-based imaging devices with an integrated carbon electrode for freely moving mice experiments

Virgil Christian Castillo, Ryoma Okada, Kuang Chih Tso, Yoshinori Sunaga, Yasumi Ohta, Hironari Takehara, Hiroyuki Tashiro, Kiyotaka Sasagawa, Jun Ohta

FENS Forum 2024

ePoster

Streamlining electrophysiology data analysis: A Python-based workflow for efficient integration and processing

Simon Gross, Philipp Janz, Anastasios Moresis, Otto Fajardo, Philipp Schoenenberger, Roger Redondo

FENS Forum 2024