Global topic spotlight
TopicWorld Wide

autism

Discover seminars, jobs, and research tagged with autism across World Wide.
60 curated items60 Seminars
Updated in 1 day
60 results
SeminarNeuroscience

Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism

Vasileios Zikopoulos
Boston University
Nov 2, 2025

Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions

SeminarNeuroscience

The Unconscious Eye: What Involuntary Eye Movements Reveal About Brain Processing

Yoram Bonneh
Bar-Ilan
Jun 9, 2025
SeminarNeuroscience

SWEBAGS conference 2024: The involvement of the striatum in autism spectrum disorder

Emanuela Santini
Karolinska Institute
Dec 4, 2024
SeminarNeuroscience

Beyond Homogeneity: Characterizing Brain Disorder Heterogeneity through EEG and Normative Modeling

Mahmoud Hassan
Founder and CEO of MINDIG, Rennes, France. Adjunct professor, Reykjavik University, Reykjavik, Iceland.
Oct 8, 2024

Electroencephalography (EEG) has been thoroughly studied for decades in psychiatry research. Yet its integration into clinical practice as a diagnostic/prognostic tool remains unachieved. We hypothesize that a key reason is the underlying patient's heterogeneity, overlooked in psychiatric EEG research relying on a case-control approach. We combine HD-EEG with normative modeling to quantify this heterogeneity using two well-established and extensively investigated EEG characteristics -spectral power and functional connectivity- across a cohort of 1674 patients with attention-deficit/hyperactivity disorder, autism spectrum disorder, learning disorder, or anxiety, and 560 matched controls. Normative models showed that deviations from population norms among patients were highly heterogeneous and frequency-dependent. Deviation spatial overlap across patients did not exceed 40% and 24% for spectral and connectivity, respectively. Considering individual deviations in patients has significantly enhanced comparative analysis, and the identification of patient-specific markers has demonstrated a correlation with clinical assessments, representing a crucial step towards attaining precision psychiatry through EEG.

SeminarNeuroscience

In vivo scalable investigation of gene functions in the brain

Xin Jin
Scripps Research
Jun 25, 2024
SeminarNeuroscience

Investigating dynamiCa++l mechanisms underlying cortical development and disease

Georgia Panagiotakos
Icahn School of Medicine at Mount Sinai
May 7, 2024
SeminarNeuroscience

Contrasting developmental principles of human brain development and their relevance to neurodevelopmental disorders

Tom Nowakowski
University of California, San Francisco
Apr 16, 2024
SeminarNeuroscience

Perception in Autism: Testing Recent Bayesian Inference Accounts

Amit Yashar
Haifa University
Apr 15, 2024
SeminarNeuroscience

Investigating activity-dependent processes during cortical neuronal assembly in development and disease

Simona Lodato
Humanitas University
Mar 19, 2024
SeminarNeuroscience

Genomic investigation of sex-differential neurodevelopment and risk for autism

Donna Werling
University of Wisconsin-Madison
Jan 30, 2024
SeminarNeuroscience

Metabolic Remodelling in the Developing Forebrain in Health and Disease

Gaia Novarino
Institute of Science and Technology Austria
Oct 30, 2023

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.

SeminarNeuroscience

Freeze or flee ? New insights from rodent models of autism

Sumantra “Shona” Chattarji
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Jun 21, 2023

Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.

SeminarNeuroscience

Translational Research in Tuberous Sclerosis as a Model for Autism and Epilepsy

Mustafa Sahin
Boston Children's Hospital & Harvard University
Jun 13, 2023
SeminarNeuroscience

Therapeutic Strategies for Autism: Targeting Three Levels of the Central Dogma of Molecular Biology with a Focus on SYNGAP1

Prof. Lilia Iakoucheva, PhD & Mr. Derek Hong, MS
UCSD School of Medicine
Jun 7, 2023
SeminarNeuroscience

Mechanisms of human cortical development and neuropsychiatric disease

Luis de la Torre-Ubieta
University of California Los Angeles
May 30, 2023
SeminarNeuroscience

Precision Genomics in Neurodevelopmental Disorders

Tychele Turner
Washington University
May 2, 2023
SeminarNeuroscience

Expanding the role of MAST kinases in brain development and epilepsy: identification of de novo pathogenic variants in MAST4

Kimberly Aldinger
University of Washington; Seattle Children's Research Institute
Apr 18, 2023
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Feb 15, 2023

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscience

Cell-type specific alterations underpinning convergent ASD phenotypes in PACS1 neurodevelopmental disorder

Alicia Guemez-Gamboa
Northwestern University Feinberg School of Medicine
Feb 7, 2023
SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 6, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscience

Hormonal control of brain sex differences

Jessica Tollkuhn
Cold Spring Harbor Laboratory
Jan 24, 2023
SeminarNeuroscience

How do Astrocytes Sculpt Synaptic Circuits?

Cagla Eroglu
Duke University
Jan 10, 2023
SeminarNeuroscience

From symptoms to circuits in Fragile X syndrome

Carlos Portera-Cailliau
University of California, Los Angeles
Dec 20, 2022
SeminarNeuroscience

The impact of emerging technologies and methods on the interpretation of genetic variation in autism and fetal genomics

Michael Talkowski
Massachusetts General Hospital, Broad Institute of MIT and Harvard, Harvard Medical School
Dec 6, 2022
SeminarNeuroscience

Dysregulated Translation in Fragile X Syndrome

Eric Klann
New York University
Nov 8, 2022
SeminarNeuroscience

Baby steps to breakthroughs in precision health in neurodevelopmental disorders

Shafali Spurling Jeste
Children's Hospital Los Angeles
Oct 25, 2022
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Oct 18, 2022

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscience

Counteracting epigenetic mechanisms in autism spectrum disorders

Sofia Lizarraga
University of South Carolina
Oct 11, 2022
SeminarNeuroscience

Sleep, development and chromatin regulation in autism

Lucia Peixoto
Washington State University
Sep 27, 2022
SeminarNeuroscience

Functional and translational implications of A-to-I editing in brain development and neurodevelopmental disorders

Michael Breen
Icahn School of Medicine at Mount Sinai
Sep 20, 2022
SeminarNeuroscience

Exploring the endocannabinoid system for intervention innovation in autism

Debra Karhson
University of New Orleans
Sep 13, 2022
SeminarNeuroscience

CANCELLED

Alicia Guemez-Gamboa
Northwestern University Feinberg School of Medicine
Jul 12, 2022
SeminarNeuroscience

Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg

Jill Escher
Jill Escher is founder of the Escher Fund for Autism, which funds research on non-genetic inheritance, as well as autism-related programs. She is a member of the governing council of the Environmental Mutagenesis and Genomics Society, where she is past chair of the Germ Cell and Heritable Effects special interest group. She also serves as president of the National Council on Severe Autism and past president of Autism Society San Francisco Bay Area. A former lawyer, she and her husband are the pa
Jul 5, 2022

Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.

SeminarNeuroscience

Studying genetic overlap between ASD risk and related traits: From polygenic pleiotropy to disorder-specific profiles

Beate St Pourcain
Max Planck Institute for Psycholinguistics
Jun 14, 2022
SeminarNeuroscienceRecording

Untitled Seminar

Sir Simon Baron Cohen
Department of Psychiatry, University of Cambridge
Jun 6, 2022
SeminarNeuroscience

Molecular Logic of Synapse Organization and Plasticity

Tabrez Siddiqui
University of Manitoba
May 30, 2022

Connections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.

SeminarNeuroscienceRecording

Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)

Sarah Garfinkel
Institute of Cognitive Neuroscience, UCL
May 23, 2022

Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.

SeminarNeuroscience

Neural Circuit Dysfunction along the Gut/Brain Axis in zebrafish models of Autism Spectrum Disorder

Julia Dallman
University of Miami
May 10, 2022
SeminarNeuroscience

Reversing autism-related phenotypes in human brain organoids

Alysson Muotri
UCSD
May 3, 2022
SeminarNeuroscience

The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior

Seth Grant
Professor of Molecular Neuroscience, Centre for Clinical Brain Sciences, University of Edinburgh, UK
May 1, 2022

The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.

SeminarNeuroscience

From the cell biology of synaptic plasticity to SFARI

Kelsey Martin
Simons Foundation Autism Research Initiative
Apr 26, 2022
SeminarNeuroscience

Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain

Longzhi Tan
Stanford
Mar 29, 2022

Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.

SeminarNeuroscience

Brain oxytocin as a modulator of social approach versus avoidance

Inga Neumann
Universität Regensburg
Mar 22, 2022
SeminarNeuroscience

One by one: brain organoid modelling of neurodevelopmental disorders at single cell resolution

Giuseppe Testa
Human Technopole
Mar 8, 2022
SeminarNeuroscience

Studying cortical development through the lens of autism spectrum disorders

Gaia Novarino
Institute of Science and Technology Austria
Feb 22, 2022
SeminarNeuroscience

Keeping your Brain in Balance: the Ups and Downs of Homeostatic Plasticity (virtual)

Gina Turrigiano, PhD
Professor, Department of Biology, Brandeis University, USA
Feb 16, 2022

Our brains must generate and maintain stable activity patterns over decades of life, despite the dramatic changes in circuit connectivity and function induced by learning and experience-dependent plasticity. How do our brains acheive this balance between opposing need for plasticity and stability? Over the past two decades, we and others have uncovered a family of “homeostatic” negative feedback mechanisms that are theorized to stabilize overall brain activity while allowing specific connections to be reconfigured by experience. Here I discuss recent work in which we demonstrate that individual neocortical neurons in freely behaving animals indeed have a homeostatic activity set-point, to which they return in the face of perturbations. Intriguingly, this firing rate homeostasis is gated by sleep/wake states in a manner that depends on the direction of homeostatic regulation: upward-firing rate homeostasis occurs selectively during periods of active wake, while downward-firing rate homeostasis occurs selectively during periods of sleep, suggesting that an important function of sleep is to temporally segregate bidirectional plasticity. Finally, we show that firing rate homeostasis is compromised in an animal model of autism spectrum disorder. Together our findings suggest that loss of homeostatic plasticity in some neurological disorders may render central circuits unable to compensate for the normal perturbations induced by development and learning.

SeminarNeuroscience

An Introduction to Autism BrainNet

David Amaral, PhD and Carolyn Komich Hare, MS
Feb 9, 2022
SeminarNeuroscience

Reward system function and dysfunction in Autism Spectrum Disorders

Camilla Bellone
University of Geneva
Feb 8, 2022
SeminarNeuroscience

Translational Biomarkers in Preclinical Models of Neurodevelopmental Disorders

Jill Silverman
UC Davis
Jan 25, 2022
SeminarNeuroscience

Brain chart for the human lifespan

Richard Bethlehem
Director of Neuroimaging, Autism Research Centre, University of Cambridge, United Kingdom
Jan 18, 2022

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.

SeminarNeuroscience

Synaptic alterations in the striatum drive ASD-related behaviors in mice

Helen Bateup
UC Berkeley
Jan 11, 2022
SeminarNeuroscience

Investigating genetic risk for psychiatric diseases in human neural cells

Nan Yang
Icahn School of Medicine at Mount Sinai
Dec 7, 2021
SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 16, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscience

Gut-brain signaling as a driver of behavior and gene expression in a mouse model for autism spectrum disorder

Drew Kiraly
Icahn School of Medicine at Mount Sinai
Nov 9, 2021
SeminarNeuroscience

On the role of the ADNP gene in mice and man

Frank Kooy
U Antwerpen
Sep 28, 2021