Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

20 items
Seminar
GMT+2

Astrocytes release glutamate by regulated exocytosis in health and disease

Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.

Speaker

Vladimir Parpura • Distinguished Professor Zhejiang Chinese Medical University and Director of the International Translational Neuroscience Research Institute, Hangzhou, P.R. China

Scheduled for

Jun 4, 2025, 2:00 PM

Timezone

GMT+2

Seminar
GMT

Computational modelling of ocular pharmacokinetics

Pharmacokinetics in the eye is an important factor for the success of ocular drug delivery and treatment. Pharmacokinetic features determine the feasible routes of drug administration, dosing levels and intervals, and it has impact on eventual drug responses. Several physical, biochemical, and flow-related barriers limit drug exposure of anterior and posterior ocular target tissues during treatment during local (topical, subconjunctival, intravitreal) and systemic administration (intravenous, per oral). Mathematical models integrate joint impact of various barriers on ocular pharmacokinetics (PKs) thereby helping drug development. The models are useful in describing (top-down) and predicting (bottom-up) pharmacokinetics of ocular drugs. This is useful also in the design and development of new drug molecules and drug delivery systems. Furthermore, the models can be used for interspecies translation and probing of disease effects on pharmacokinetics. In this lecture, ocular pharmacokinetics and current modelling methods (noncompartmental analyses, compartmental, physiologically based, and finite element models) are introduced. Future challenges are also highlighted (e.g. intra-tissue distribution, prediction of drug responses, active transport).

Speaker

Arto Urtti • School of Pharmacy, University of Eastern Finland

Scheduled for

Apr 21, 2025, 2:00 PM

Timezone

GMT

Seminar
GMT+2

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

Speaker

Michael Telias • University of Rochester

Scheduled for

Apr 7, 2025, 3:00 PM

Timezone

GMT+2

Seminar
GMT+2

Decoding ketamine: Neurobiological mechanisms underlying its rapid antidepressant efficacy

Unlike traditional monoamine-based antidepressants that require weeks to exert effects, ketamine alleviates depression within hours, though its clinical use is limited by side effects. While ketamine was initially thought to work primarily through NMDA receptor (NMDAR) inhibition, our research reveals a more complex mechanism. We demonstrate that NMDAR inhibition alone cannot explain ketamine's sustained antidepressant effects, as other NMDAR antagonists like MK-801 lack similar efficacy. Instead, the (2R,6R)-hydroxynorketamine (HNK) metabolite appears critical, exhibiting antidepressant effects without ketamine's side effects. Paradoxically, our findings suggest an inverted U-shaped dose-response relationship where excessive NMDAR inhibition may actually impede antidepressant efficacy, while some level of NMDAR activation is necessary. The antidepressant actions of ketamine and (2R,6R)-HNK require AMPA receptor activation, leading to synaptic potentiation and upregulation of AMPA receptor subunits GluA1 and GluA2. Furthermore, NMDAR subunit GluN2A appears necessary and possibly sufficient for these effects. This research establishes NMDAR-GluN2A activation as a common downstream effector for rapid-acting antidepressants, regardless of their initial targets, offering promising directions for developing next-generation antidepressants with improved efficacy and reduced side effects.

Speaker

Zanos Panos • Translational Neuropharmacology Lab, University of Cyprus, Center for Applied Neurosience & Department of Psychology, Nicosia, Cyprus

Scheduled for

Apr 3, 2025, 12:00 PM

Timezone

GMT+2

Seminar
GMT+2

Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma

Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.

Speaker

Ioannis Charalampopoulos • Professor of Pharmacology, Medical School, University of Crete & Affiliated Researcher, Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH)

Scheduled for

Mar 6, 2025, 1:30 PM

Timezone

GMT+2

Seminar
GMT+1

Metabolic-functional coupling of parvalbmunin-positive GABAergic interneurons in the injured and epileptic brain

Parvalbumin-positive GABAergic interneurons (PV-INs) provide inhibitory control of excitatory neuron activity, coordinate circuit function, and regulate behavior and cognition. PV-INs are uniquely susceptible to loss and dysfunction in traumatic brain injury (TBI) and epilepsy but the cause of this susceptibility is unknown. One hypothesis is that PV-INs use specialized metabolic systems to support their high-frequency action potential firing and that metabolic stress disrupts these systems, leading to their dysfunction and loss. Metabolism-based therapies can restore PV-IN function after injury in preclinical TBI models. Based on these findings, we hypothesize that (1) PV-INs are highly metabolically specialized, (2) these specializations are lost after TBI, and (3) restoring PV-IN metabolic specializations can improve PV-IN function as well as TBI-related outcomes. Using novel single-cell approaches, we can now quantify cell-type-specific metabolism in complex tissues to determine whether PV-IN metabolic dysfunction contributes to the pathophysiology of TBI.

Speaker

Chris Dulla • Tufts

Scheduled for

Jun 18, 2024, 6:00 PM

Timezone

GMT+1

Seminar
GMT+1

Blood-brain barrier dysfunction in epilepsy: Time for translation

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

Speaker

Alon Friedman • Dalhousie University

Scheduled for

Feb 27, 2024, 6:00 PM

Timezone

GMT+1

Seminar
GMT

Neuromodulation of subjective experience

Many psychoactive substances are used with the aim of altering experience, e.g. as analgesics, antidepressants or antipsychotics. These drugs act on specific receptor systems in the brain, including the opioid, serotonergic and dopaminergic systems. In this talk, I will summarise human drug studies targeting opioid receptors and their role for human experience, with focus on the experience of pain, stress, mood, and social connection. Opioids are only indicated for analgesia, due to their potential to cause addiction. When these regulations occurred, other known effects were relegated to side effects. This may be the cause of the prevalent myth that opioids are the most potent painkillers, despite evidence from head-to-head trials, Cochrane reviews and network meta-analyses that opioids are not superior to non-opioid analgesics in the treatment of acute or chronic non-cancer pain. However, due to the variability and diversity of opioid effects across contexts and experiences, some people under some circumstances may indeed benefit from prolonged treatment. I will present data on individual differences in opioid effects due to participant sex and stress induction. Understanding the effects of these commonly used medications on other aspects of the human experience is important to ensure correct use and to prevent unnecessary pain and addiction risk.

Speaker

Siri Leknes • University of Oslo

Scheduled for

Nov 13, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT+1

Use of brain imaging data to improve prescriptions of psychotropic drugs - Examples of ketamine in depression and antipsychotics in schizophrenia

The use of molecular imaging, particularly PET and SPECT, has significantly transformed the treatment of schizophrenia with antipsychotic drugs since the late 1980s. It has offered insights into the links between drug target engagement, clinical effects, and side effects. A therapeutic window for receptor occupancy is established for antipsychotics, yet there is a divergence of opinions regarding the importance of blood levels, with many downplaying their significance. As a result, the role of therapeutic drug monitoring (TDM) as a personalized therapy tool is often underrated. Since molecular imaging of antipsychotics has focused almost entirely on D2-like dopamine receptors and their potential to control positive symptoms, negative symptoms and cognitive deficits are hardly or not at all investigated. Alternative methods have been introduced, i.e. to investigate the correlation between approximated receptor occupancies from blood levels and cognitive measures. Within the domain of antidepressants, and specifically regarding ketamine's efficacy in depression treatment, there is limited comprehension of the association between plasma concentrations and target engagement. The measurement of AMPA receptors in the human brain has added a new level of comprehension regarding ketamine's antidepressant effects. To ensure precise prescription of psychotropic drugs, it is vital to have a nuanced understanding of how molecular and clinical effects interact. Clinician scientists are assigned with the task of integrating these indispensable pharmacological insights into practice, thereby ensuring a rational and effective approach to the treatment of mental health disorders, signaling a new era of personalized drug therapy mechanisms that promote neuronal plasticity not only under pathological conditions, but also in the healthy aging brain.

Speaker

Xenia Marlene HART. • Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany & Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan

Scheduled for

Oct 12, 2023, 11:00 AM

Timezone

GMT+1

Seminar
GMT+1

From pecking order to ketamine - neural mechanism of social and emotional behavior

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

Speaker

Hailan Hu • Zhejiang University School of Medicine, Hangzhou, China

Scheduled for

Jun 21, 2023, 12:15 PM

Timezone

GMT+1

Seminar
GMT

Immunosuppression for Parkinson's disease - a new therapeutic strategy?

Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.

Speaker

Caroline Williams-Gray • Department of Clinical Neurosciences, University of Cambridge

Scheduled for

May 29, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT

Dynamic endocrine modulation of the nervous system

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

Speaker

Emily Jabocs • US Santa Barbara Neuroscience

Scheduled for

Apr 17, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT+1

Nature over Nurture: Functional neuronal circuits emerge in the absence of developmental activity

During development, the complex neuronal circuitry of the brain arises from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that neuronal activity plays a critical role in shaping circuits for behavior. Current AI technologies are modeled after the same principle: connections in an initial weight matrix are pruned and strengthened by activity-dependent signals until the network can sufficiently generalize a set of inputs into outputs. Here, we challenge these learning-dominated assumptions by quantifying the contribution of neuronal activity to the development of visually guided swimming behavior in larval zebrafish. Intriguingly, dark-rearing zebrafish revealed that visual experience has no effect on the emergence of the optomotor response (OMR). We then raised animals under conditions where neuronal activity was pharmacologically silenced from organogenesis onward using the sodium-channel blocker tricaine. Strikingly, after washout of the anesthetic, animals performed swim bouts and responded to visual stimuli with 75% accuracy in the OMR paradigm. After shorter periods of silenced activity OMR performance stayed above 90% accuracy, calling into question the importance and impact of classical critical periods for visual development. Detailed quantification of the emergence of functional circuit properties by brain-wide imaging experiments confirmed that neuronal circuits came ‘online’ fully tuned and without the requirement for activity-dependent plasticity. Thus, contrary to what you learned on your mother's knee, complex sensory guided behaviors can be wired up innately by activity-independent developmental mechanisms.

Speaker

Dániel L. Barabási • Engert lab, MCB Harvard University

Scheduled for

Apr 4, 2023, 5:35 PM

Timezone

GMT+1

Seminar
GMT

Valentine’s Day for people with multiple sclerosis: promoting brain repair through remyelination

Current disease-modifying therapies in multiple sclerosis are all focused on suppressing the inflammatory phase of the disease. This has been extremely successful, and it is doubtful that significantly more efficacious anti-inflammatory treatments will be found. However, it remains the case that people with relapsing-remitting multiple sclerosis acquire disability on treatment, and enter the secondary progressive phase. I argue that we now need treatments that prevent neuronal degeneration. The most promising approach is to prevent axons degenerating by remyelination. Since the discovery that the adult brain contains stem cells which can remyelinate, the problem now is how to promote endogenous remyelination, and how to know when we have achieved this! We have successfully identified one drug which promotes remyelination but unfortunately it is too toxic for use in the clinic. So the hunt continues.

Speaker

Alasdair Coles • Department of Clinical Neurosciences, University of Cambridge

Scheduled for

Feb 13, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT

Programmed axon death: from animal models into human disease

Programmed axon death is a widespread and completely preventable mechanism in injury and disease. Mouse and Drosophila studies define a molecular pathway involving activation of SARM1 NA Dase and its prevention by NAD synthesising enzyme NMNAT2 . Loss of axonal NMNAT2 causes its substrate, NMN , to accumulate and activate SARM1 , driving loss of NAD and changes in ATP , ROS and calcium. Animal models caused by genetic mutation, toxins, viruses or metabolic defects can be alleviated by blocking programmed axon death, for example models of CMT1B , chemotherapy-induced peripheral neuropathy (CIPN), rabies and diabetic peripheral neuropathy (DPN). The perinatal lethality of NMNAT2 null mice is completely rescued, restoring a normal, healthy lifespan. Animal models lack the genetic and environmental diversity present in human populations and this is problematic for modelling gene-environment combinations, for example in CIPN and DPN , and identifying rare, pathogenic mutations. Instead, by testing human gene variants in WGS datasets for loss- and gain-of-function, we identified enrichment of rare SARM1 gain-of-function variants in sporadic ALS , despite previous negative findings in SOD1 transgenic mice. We have shown in mice that heterozygous SARM1 loss-of-function is protective from a range of axonal stresses and that naturally-occurring SARM1 loss-of-function alleles are present in human populations. This enables new approaches to identify disorders where blocking SARM1 may be therapeutically useful, and the existence of two dominant negative human variants in healthy adults is some of the best evidence available that drugs blocking SARM1 are likely to be safe. Further loss- and gain-of-function variants in SARM1 and NMNAT2 are being identified and used to extend and strengthen the evidence of association with neurological disorders. We aim to identify diseases, and specific patients, in whom SARM1 -blocking drugs are most likely to be effective.

Speaker

Michael Coleman • Department of Clinical Neurosciences, University of Cambridge

Scheduled for

Jan 30, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT+1

When to stop immune checkpoint inhibitor for malignant melanoma? Challenges in emulating target trials

Observational data have become a popular source of evidence for causal effects when no randomized controlled trial exists, or to supplement information provided by those. In practice, a wide range of designs and analytical choices exist, and one recent approach relies on the target trial emulation framework. This framework is particularly well suited to mimic what could be obtained in a specific randomized controlled trial, while avoiding time-related selection biases. In this abstract, we present how this framework could be useful to emulate trials in malignant melanoma, and the challenges faced when planning such a study using longitudinal observational data from a cohort study. More specifically, two questions are envisaged: duration of immune checkpoint inhibitors, and trials comparing treatment strategies for BRAF V600-mutant patients (targeted therapy as 1st line, followed by immunotherapy as 2nd line, vs. immunotherapy as 2nd line followed by targeted therapy as 1st line). Using data from 1027 participants to the MELBASE cohort, we detail the results for the emulation of a trial where immune checkpoint inhibitor would be stopped at 6 months vs. continued, in patients in response or with stable disease.

Speaker

Raphaël Porcher • Université Paris Cité and Université Sorbonne Paris Nord

Scheduled for

Jan 29, 2023, 11:00 AM

Timezone

GMT+1

Seminar
EDT

Protocols for the social transfer of pain and analgesia in mice

We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund’s adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. Highlights • A protocol for the rapid social transfer of pain in rodents • Detailed requirements for handling and housing conditions • Procedures for habituation, social interaction, and pain induction and assessment • Adaptable for social transfer of analgesia and may be used to study empathy in rodents https://doi.org/10.1016/j.xpro.2022.101756

Speaker

Monique L. Smith • UCSD

Scheduled for

Dec 7, 2022, 11:00 AM

Timezone

EDT

Seminar
GMT

How can we treat visceral pain?

Chronic pain is a leading cause of morbidity, common to patients with gastrointestinal diseases such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Most pain killers are largely ineffective against this type of pain or restricted for use in these patients due to gut related complications and risk of addition. A significant unmet clinical need therefore exists to develop novel non-opioid based visceral analgesics.

Speaker

David Bulmer • Department of Pharmacology, University of Cambridge

Scheduled for

Nov 28, 2022, 4:00 PM

Timezone

GMT

Seminar
GMT

Brain-muscle signaling coordinates exercise adaptations in Drosophila

Chronic exercise is a powerful intervention that lowers the incidence of most age-related diseases while promoting healthy metabolism in humans. However, illness, injury or age prevent many humans from consistently exercising. Thus, identification of molecular targets that can mimic the benefits of exercise would be a valuable tool to improve health outcomes of humans with neurodegenerative or mitochondrial diseases, or those with enforced sedentary lifestyles. Using a novel exercise platform for Drosophila, we have identified octopaminergic neurons as a key subset of neurons that are critical for the exercise response, and shown that periodic daily stimulation of these neurons can induce a systemic exercise response in sedentary flies. Octopamine is released into circulation where it signals through various octopamine receptors in target tissues and induces gene expression changes similar to exercise. In particular, we have identified several key molecules that respond to octopamine in skeletal muscle, including the mTOR modulator Sestrin, the PGC-1α homolog Spargel, and the FNDC5/Irisin homolog Iditarod. We are currently testing these molecules as potential therapies for multiple diseases that reduce mobility, including the PolyQ disease SCA2 and the mitochondrial disease Barth syndrome.

Speaker

Robert Wessells • Wayne State University

Scheduled for

Sep 19, 2022, 4:00 PM

Timezone

GMT

Seminar
GMT+11

Linking GWAS to pharmacological treatments for psychiatric disorders

Genome-wide association studies (GWAS) have identified multiple disease-associated genetic variations across different psychiatric disorders raising the question of how these genetic variants relate to the corresponding pharmacological treatments. In this talk, I will outline our work investigating whether functional information from a range of open bioinformatics datasets such as protein interaction network (PPI), brain eQTL, and gene expression pattern across the brain can uncover the relationship between GWAS-identified genetic variation and the genes targeted by current drugs for psychiatric disorders. Focusing on four psychiatric disorders---ADHD, bipolar disorder, schizophrenia, and major depressive disorder---we assess relationships between the gene targets of drug treatments and GWAS hits and show that while incorporating information derived from functional bioinformatics data, such as the PPI network and spatial gene expression, can reveal links for bipolar disorder, the overall correspondence between treatment targets and GWAS-implicated genes in psychiatric disorders rarely exceeds null expectations. This relatively low degree of correspondence across modalities suggests that the genetic mechanisms driving the risk for psychiatric disorders may be distinct from the pathophysiological mechanisms used for targeting symptom manifestations through pharmacological treatments and that novel approaches for understanding and treating psychiatric disorders may be required.

Speaker

Aurina Arnatkeviciute • Monash University

Scheduled for

Aug 18, 2022, 1:00 PM

Timezone

GMT+11