Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

20 items
Seminar
GMT+1

Learning to see stuff

Humans are very good at visually recognizing materials and inferring their properties. Without touching surfaces, we can usually tell what they would feel like, and we enjoy vivid visual intuitions about how they typically behave. This is impressive because the retinal image that the visual system receives as input is the result of complex interactions between many physical processes. Somehow the brain has to disentangle these different factors. I will present some recent work in which we show that an unsupervised neural network trained on images of surfaces spontaneously learns to disentangle reflectance, lighting and shape. However, the disentanglement is not perfect, and we find that as a result the network not only predicts the broad successes of human gloss perception, but also the specific pattern of errors that humans exhibit on an image-by-image basis. I will argue this has important implications for thinking about appearance and vision more broadly.

Speaker

Roland W. Fleming • Giessen University

Scheduled for

Mar 12, 2023, 2:00 PM

Timezone

GMT+1

Seminar
PDT

Magnetic Handshake Materials

Biological materials gain complexity from the programmable nature of their components. To manufacture materials with comparable complexity synthetically, we need to create building blocks with low crosstalk so that they only bind to their desired partners. Canonically, these building blocks are made using DNA strands or proteins to achieve specificity. Here we propose a new materials platform, termed Magnetic Handshake Materials, in which we program interactions through designing magnetic dipole patterns. This is a completely synthetic platform, enabled by magnetic printing technology, which is easier to both model theoretically and control experimentally. In this seminar, I will give an overview of the development of the Magnetic Handshake Materials platform, ranging from interaction, assembly to function design.

Speaker

Chrisy Xiyu Du • Harvard University

Scheduled for

Jul 31, 2022, 9:00 AM

Timezone

PDT

Seminar
PDT

New prospects in shape morphing sheets: unexplored pathways, 4D printing, and autonomous actuation

Living organisms have mastered the dynamic control of stresses within sheets to induce shape transformation and locomotion. For instance, the spatiotemporal pattern of action potential in a heart yields a dynamical stress field leading to shape changes and biological function. Such structures inspired the development of theoretical tools and responsive materials alike. Yet, present attempts to mimic their rich dynamics and phenomenology in autonomous synthetic matter are still very limited. In this talk, I will present several complementing innovations toward this goal: novel shaping mechanisms that were overlooked by previous research, new fabrication techniques for programmable matter via 4D printing of gel structures, and most prominently, the first autonomous shape morphing membranes. The dynamical control over the geometry of the material is a prevalent theme in all of these achievements. In particular, the latter system demonstrates localized deformations, induced by a pattern-forming chemical reaction, that prescribe the patterns of curvature, leading to global shape evolution. Together, these developments present a route for modeling and producing fully autonomous soft membranes mimicking some of the locomotive capabilities of living organisms.

Speaker

Ido Levin • University of Washington

Scheduled for

Jun 5, 2022, 9:00 AM

Timezone

PDT

Seminar
PDT

Improving Communication With the Brain Through Electrode Technologies

Over the past 30 years bionic devices such as cochlear implants and pacemakers, have used a small number of metal electrodes to restore function and monitor activity in patients following disease or injury of excitable tissues. Growing interest in neurotechnologies, facilitated by ventures such as BrainGate, Neuralink and the European Human Brain Project, has increased public awareness of electrotherapeutics and led to both new applications for bioelectronics and a growing demand for less invasive devices with improved performance. Coupled with the rapid miniaturisation of electronic chips, bionic devices are now being developed to diagnose and treat a wide variety of neural and muscular disorders. Of particular interest is the area of high resolution devices that require smaller, more densely packed electrodes. Due to poor integration and communication with body tissue, conventional metallic electrodes cannot meet these size and spatial requirements. We have developed a range of polymer based electronic materials including conductive hydrogels (CHs), conductive elastomers (CEs) and living electrodes (LEs). These technologies provide synergy between low impedance charge transfer, reduced stiffness and an ability to be provide a biologically active interface. A range of electrode approaches are presented spanning wearables, implantables and drug delivery devices. This talk outlines the materials development and characterisation of both in vitro properties and translational in vivo performance. The challenges for translation and commercial uptake of novel technologies will also be discussed.

Speaker

Rylie Green • Imperial College London

Scheduled for

Oct 27, 2021, 8:00 AM

Timezone

PDT

Seminar
GMT

Learning to see Stuff

Materials with complex appearances, like textiles and foodstuffs, pose challenges for conventional theories of vision. How does the brain learn to see properties of the world—like the glossiness of a surface—that cannot be measured by any other senses? Recent advances in unsupervised deep learning may help shed light on material perception. I will show how an unsupervised deep neural network trained on an artificial environment of surfaces that have different shapes, materials and lighting, spontaneously comes to encode those factors in its internal representations. Most strikingly, the model makes patterns of errors in its perception of material that follow, on an image-by-image basis, the patterns of errors made by human observers. Unsupervised deep learning may provide a coherent framework for how many perceptual dimensions form, in material perception and beyond.

Speaker

Kate Storrs • Justus Liebig University Giessen

Scheduled for

Oct 26, 2021, 2:00 PM

Timezone

GMT

Seminar
PDT

Flow singularities in soft materials: from thermal motion to active molecular stresses

The motion of passive or active agents in soft materials generates long ranged deformation fields with signatures informed by hydrodynamics and the properties of the soft matter host. These signatures are even more complex when the soft matter host itself is an active material. Measurement of these fields reveals mechanics of the soft materials and hydrodynamics central to understanding self-organization. In this talk, I first introduce a new method based on correlated displacement velocimetry, and use the method to measure flow fields around particles trapped at the interface between immiscible fluids. These flow fields, decomposed into interfacial hydrodynamic multipoles, including force monopole and dipole flows, provide key insights essential to understanding the interface’s mechanical response. I then extend this method to various actomyosin systems to measure local strain fields around myosin molecular motors. I show how active stresses propagate in 2d liquid crystalline structures and in disordered networks that are formed by the actin filaments. In particular, the response functions of contractile and stable gels are characterized. Through similar analysis, I also measure the retrograde flow fields of stress fibers in single cells to understand subcellular mechanochemical systems.

Speaker

Mehdi Molaei • Pritzker School of Molecular Engineering, University of Chicago

Scheduled for

Aug 15, 2021, 9:00 AM

Timezone

PDT

Seminar
GMT

Trapping active particles up to the limiting case: bacteria enclosed in a biofilm

Active matter systems are composed of constituents, each one in nonequilibrium, that consume energy in order to move [1]. A characteristic feature of active matter is collective motion leading to nonequilibrium phase transitions or large scale directed motion [2]. A number of recent works have featured active particles interacting with obstacles, either moving or fixed [3,4,5]. When an active particle encounters an asymmetric obstacle, different behaviours are detected depending on the nature of its active motion. On the one side, rectification effects arise in a suspension of run-and-tumble particles interacting with a wall of funnelled-shaped openings, caused by particles persistence length [6]. The same trapping mechanism could be responsible for the intake of microorganisms in the underground leaves [7] of Carnivorous plants [8]. On the other side, for aligning particles [9] interacting with a wall of funnelled-shaped openings, trapping happens on the (opposite) wider opening side of the funnels [10,11]. Interestingly, when funnels are located on a circular array, trapping is more localised and depends on the nature of the Vicsek model. Active particles can be synthetic (such as synthetic active colloids) or alive (such as living bacteria). A prototypical model to study living microswimmers is P. fluorescens, a rod shaped and biofilm forming bacterium. Biofilms are microbial communities self-assembled onto external interfaces. Biofilms can be described within the Soft Matter physics framework [12] as a viscoelastic material consisting of colloids (bacterial cells) embedded in a cross-linked polymer gel (polysaccharides cross-linked via proteins/multivalent cations), whose water content vary depending on the environmental conditions. Bacteria embedded in the polymeric matrix control biofilm structure and mechanical properties by regulating its matrix composition. We have recently monitored structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress [13,14]. We have demonstrated that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions. REFERENCES [1] C. Bechinger et al. Rev. Mod. Phys. 88, 045006 (2016); [2] T. Vicsek, A. Zafeiris Phys. Rep. 517, 71 (2012); [3] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe, and G. Volpe, Reviews of Modern Physics 88, 045006 (2016); [4] R Martinez, F Alarcon, DR Rodriguez, JL Aragones, C Valeriani The European Physical Journal E 41, 1 (2018); [5] DR Rodriguez, F Alarcon, R Martinez, J Ramírez, C Valeriani, Soft matter 16 (5), 1162 (2020); [6] C. O. Reichhardt and C. Reichhardt, Annual Review of Condensed Matter
Physics 8, 51 (2017); [7] W Barthlott, S Porembski, E Fischer, B Gemmel Nature 392, 447 (1998); [8] C B. Giuliano, R Zhang, R.Martinez Fernandez, C.Valeriani and L.Wilson (in preparation, 2021); [9] R Martinez, F Alarcon, JL Aragones, C Valeriani Soft matter 16 (20), 4739 (2020); [10] P. Galajada, J. Keymer, P. Chaikin and R.Austin, Journal of bacteriology, 189, 8704 (2007); [11] M. Wan, C.O. Reichhardt, Z. Nussinov, and C. Reichhardt, Physical Review Letters 101, 018102 (2008); [12] J N. Wilking , T E. Angelini , A Seminara , M P. Brenner , and D A. Weitz MRS Bulletin 36, 385 (2011); [13]J Jara, F Alarcón, A K Monnappa, J Ignacio Santos, V Bianco, P Nie, M Pica Ciamarra, A Canales, L Dinis, I López-Montero, C Valeriani, B Orgaz, Frontiers in microbiology 11, 3460 (2021); [14] P Nie, F Alarcon, I López-Montero, B Orgaz, C Valeriani, M Pica Ciamarra

Speaker

Chantal Valeriani • Complutense Madrid

Scheduled for

May 25, 2021, 4:00 PM

Timezone

GMT

Seminar
PDT

Light-degradable hydrogels as dynamic triggers for implantable devices

Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. This talk will cover the development of a modular and tunable light-triggerable hydrogel capable of interfacing with implantable devices. We have applied these materials to two applications in the gastrointestinal (GI) tract and demonstrated biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.

Speaker

Ritu Raman • MIT

Scheduled for

May 9, 2021, 9:00 AM

Timezone

PDT

Seminar
EDT

How can we learn from nature to build better polymer composites?

Nature is replete with extraordinary materials that can grow, move, respond, and adapt. In this talk I will describe our ongoing efforts to develop advanced polymeric materials, inspired by nature. First, I will describe my group’s efforts to develop ultrastiff, ultratough materials inspired by the byssal materials of marine mussels. These adhesive contacts allow mussels to secure themselves to rocks, wood, metals and other surfaces in the harsh conditions of the intertidal zone. By developing a foundational understanding of the structure-mechanics relationships and processing of the natural system, we can design high-performance materials that are extremely strong without compromising extensibility, as well as macroporous materials with tunable toughness and strength. In the second half of the talk, I will describe new efforts to exploit light as a means of remote control and power. By leveraging the phototransduction pathways of highly-absorbing, negatively photochromic molecules, we can drive the motion of amorphous polymeric materials as well as liquid flows. These innovations enable applications in packaging, connective tissue repair, soft robotics, and optofluidics.

Speaker

Megan Valentine • UCSB

Scheduled for

Apr 27, 2021, 2:00 PM

Timezone

EDT

Seminar
EDT

Frustrated Self-Assembly of Non-Euclidean Crystals of Nanoparticles

Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of complex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observations. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material capabilities such as tunable optical activity, essential for multiple emerging technologies.

Speaker

Xioaming Mao • University of Michigan

Scheduled for

Apr 13, 2021, 2:00 PM

Timezone

EDT

Seminar
EDT

Tissue fluidization at the onset of zebrafish gastrulation

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables at criticality. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.

Speaker

Carl-Philipp Heisenberg • IST Austria

Scheduled for

Mar 30, 2021, 10:00 AM

Timezone

EDT

Seminar
EDT

Bend, slip, or break?

Rigidity is the ability of a system to resist imposed stresses before ultimately undergoing failure. However, disordered materials often contain both rigid and floppy subregions that complicate the utility of taking system-wide averages. I will talk about 3 frameworks capable of connecting the internal structure of disordered materials to their rigidity and/or failure under loading, and describe how my collaborators and I have applied these frameworks to laboratory data on laser-cut lattices and idealized granular materials. These are, in order of increasing physics content: (1) centrality within an adjacency matrix describing its connectivity, (2) Maxwell constraint counting on the full network of frictional contact forces, and (3) the vibrational modes of a synthetic dynamical matrix (Hessian). The first two rely primarily on topology, and the second two contrast the utility of considering interparticle forces (Coulomb failure) vs. the energy landscape. All three methods, while successfully elucidating the origins of rigidity and brittle vs. ductile failure, also provide interesting counterpoints regarding how much information is enough to make predictions.

Speaker

Karen Daniels • NC State University

Scheduled for

Mar 2, 2021, 2:00 PM

Timezone

EDT

Seminar
EDT

Driving Soft Materials with Magnetic Fields

Magnetic fields exert controllable forces that generate microscopic actuation and locomotion in soft materials with superparamagnetic or ferromagnetic components. I will describe the shape changes and materials parameters required to drive and direct matter including filaments, membranes and hydrogels with magnetic components using precessing magnetic fields

Speaker

Monica Olvera de la Cruz • Northwestern University

Scheduled for

Feb 23, 2021, 2:00 PM

Timezone

EDT

Seminar
GMT

Electronics on the brain

One of the most important scientific and technological frontiers of our time is the interfacing of electronics with the human brain. This endeavour promises to help understand how the brain works and deliver new tools for diagnosis and treatment of pathologies including epilepsy and Parkinson’s disease. Current solutions, however, are limited by the materials that are brought in contact with the tissue and transduce signals across the biotic/abiotic interface. Recent advances in electronics have made available materials with a unique combination of attractive properties, including mechanical flexibility, mixed ionic/electronic conduction, enhanced biocompatibility, and capability for drug delivery. Professor Malliaras will present examples of novel devices for recording and stimulation of neurons and show that organic electronic materials offer tremendous opportunities to study the brain and treat its pathologies.

Speaker

George Malliaras • Department of Engineering

Scheduled for

Feb 22, 2021, 4:00 PM

Timezone

GMT

Seminar
EDT

The physics of cement cohesion

Cement is the main binding agent in concrete, literally gluing together rocks and sand into the most-used synthetic material on Earth. However, cement production is responsible for significant amounts of man- made greenhouse gases—in fact if the cement industry were a country, it would be the third largest emitter in the world. Alternatives to the current, environmentally harmful cement production process are not available essentially because the gaps in fundamental understanding hamper the development of smarter and more sustainable solutions. The ultimate challenge is to link the chemical composition of cement grains to the nanoscale physics of the cohesive forces that emerge when mixing cement with water. Cement nanoscale cohesion originates from the electrostatics of ions accumulated in a water-based solution between like-charged surfaces but it is not captured by existing theories because of the nature of the ions involved and the high surface charges. Surprisingly enough, this is also the case for unexplained cohesion in a range of colloidal and biological matter. About one century after the early studies of cement hydration, we have quantitatively solved this notoriously hard problem and discovered how cement cohesion develops during hydration. I will discuss how 3D numerical simulations that feature a simple but molecular description of ions and water, together with an analytical theory that goes beyond the traditional continuum approximations, helped us demonstrate that the optimized interlocking of ion-water structures determine the net cohesive forces and their evolution. These findings open the path to scientifically grounded strategies of material design for cements and have implications for a much wider range of materials and systems where ionic water-based solutions feature both strong Coulombic and confinement effects, ranging from biological membranes to soils. Construction materials are central to our society and to our life as humans on this planet, but usually far removed from fundamental science. We can now start to understand how cement physical-chemistry determines performance, durability and sustainability.

Speaker

Emanuela Del Gado • Georgetown University

Scheduled for

Jan 26, 2021, 2:00 PM

Timezone

EDT

Seminar
CDT

“The Mechanics of Non-Equilibrium Soft Interfaces”

At small length-scales, capillary effects are significant, and thus the mechanics of soft material interfaces may be dominated by solid surface stresses or liquid surface tensions. The balance between surface and bulk properties is described by an elasto-capillary length-scale, in which equilibrium interfacial energies are constant. However, at small length-scales in biological materials, including living cells and tissues, interfacial energies are not constant but are actively regulated and driven far from equilibrium. Thus, the balance between surface and bulk properties depends upon the distance from equilibrium. Here, we model the spreading (wetting) of living cell aggregates as ‘active droplets’, with a non-equilibrium surface tension that depends upon internal stress generated by the actomyosin cytoskeleton. Depending upon the extent of activity, droplet surface properties adapt to the mechanics of their surroundings. The impact of this adaptation challenges contemporary models of interfacial mechanics, including extensively used models of contact mechanics and wetting.

Speaker

Michael Murrell • Yale University

Scheduled for

Jan 25, 2021, 12:45 PM

Timezone

CDT

Seminar
EDT

Endless forms most beautiful: how to program materials using geometry, topology and singularities

The dream of programmable matter is to create materials whose physical properties (shape, moduli, response to perturbations, etc.) can be changed on the fly. For many years, my group has been thinking about how to program flat sheets that fold up into three dimensional shapes, most recently by exploiting the principles of origami design. Unfortunately, a combinatorial explosion of folding pathways makes robust folding particularly challenging. In this talk, I will discuss how this pluripotency arises from the topology of the configuration space. This suggests a broader understanding of a larger class of materials spanning from folding forms to spring networks to mechanical structures that perform computational logic.

Speaker

Christian Santangelo • Syracuse University

Scheduled for

Nov 10, 2020, 2:00 PM

Timezone

EDT

Seminar
CDT

“LIM Domain Proteins in Cell Mechanotransduction”

My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will discuss our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains. We developed a screen to assess the force-dependent localization of LIM domain-containing region (LCR) from ~30 genes to the actin cytoskeleton and identified features common to their force-sensitive localization. Through in vitro reconstitution, we found that the LCR binds directly to mechanically stressed actin filaments. Moreover, the LCR from the fission yeast protein paxillin-like 1 is also mechanosensitive, suggesting force-sensitivity is highly conserved. We speculate that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.

Speaker

Margaret Gardel • University of Chicago

Scheduled for

Oct 5, 2020, 12:45 PM

Timezone

CDT

Seminar
GMT

Mechanical Homeostasis of the Actin Cytoskeleton

My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will describe how optogenetic control of RhoA GTPase is a powerful and versatile force spectroscopy approach of cytoskeletal assemblies and its recent use to probe repair response in actomyosin stress fibers. I will also describe our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains that bind exclusively to mechanically stressed actin filaments. Our results suggest that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.

Speaker

Margaret Gardel • University of Chicago

Scheduled for

Sep 17, 2020, 3:00 PM

Timezone

GMT

Seminar
CDT

Length Scales and Dynamics in Contractile Active Gels

Most materials deform when external stresses are applied. This paradigm is familiar to sculptors who deform clay to produce structures. However, living materials such as cells and embryos are capable of deforming on their own. Contractile active gels of the proteins actin and myosin are one of the main drivers of force generation in biology. Here I will present experiments that characterize the length-scale behavior of active gel contraction, which find evidence for critical behavior. I will then present experiments that characterize the dynamics of active gel contraction, which identify dynamic precursors to contraction.

Speaker

José R. Alvarado • University of Texas at Austin

Scheduled for

Sep 14, 2020, 12:45 PM

Timezone

CDT