Events
Open full Events browserLoading...
Live and recorded talks from the researchers shaping this domain.
How the brain barriers ensure CNSimmune privilege”
Britta Engelhard’s research is devoted to understanding thefunction of the different brain barriers in regulating CNS immunesurveillance and how their impaired function contributes toneuroinflammatory diseases such as Multiple Sclerosis (MS) orAlzheimer’s disease (AD). Her laboratory combines expertise invascular biology, neuroimmunology and live cell imaging and hasdeveloped sophisticated in vitro and in vivo approaches to studyimmune cell interactions with the brain barriers in health andneuroinflammation.
Speaker
Britta Engelhardt • Theodor Kocher Institute, University of Bern, Switzerland
Scheduled for
Sep 25, 2024, 4:00 PM
Timezone
GMT+1
The immunopathogenesis of autoimmune seizure disorders
Immune-mediated mechanisms are increasingly recognised as a cause of epilepsy even in the absence of an immune response against a specifical neuronal antigen. In some cases, these autoimmune processes are clearly pathogenic, for example acute seizures in autoimmune encephalitis, whereas in others this is less clear, for example autoimmune-associated epilepsy. Recent research has provided novel insights into the clinical, paraclinical and immunopathogenetic mechanisms in these conditions. I will provide an overview of clinical and paraclinical features of immune-associated seizures. Furthermore, I will describe specific immunopathogenic examples implicating lymphoid follicular autoimmunisation and intrathecal B cells in these conditions. These insights into immunopathogenesis may help to explain the role of current and immunotherapies in these conditions.
Speaker
Adam Handel • Oxford University
Scheduled for
Mar 26, 2024, 6:00 PM
Timezone
GMT+1
Of glia and macrophages, signaling hubs in development and homeostasis
We are interested in the biology of macrophages, which represent the first line of defense against pathogens. In Drosophila, the embryonic hemocytes arise from the mesoderm whereas glial cells arise from multipotent precursors in the neurogenic region. These cell types represent, respectively, the macrophages located outside and within the nervous system (similar to vertebrate microglia). Thus, despite their different origin, hemocytes and glia display common functions. In addition, both cell types express the Glide/Gcm transcription factor, which plays an evolutionarily conserved role as an anti-inflammatory factor. Moreover, embryonic hemocytes play an evolutionarily conserved and fundamental role in development. The ability to migrate and to contact different tissues/organs most likely allow macrophages to function as signaling hubs. The function of macrophages beyond the recognition of the non-self calls for revisiting the biology of these heterogeneous and plastic cells in physiological and pathological conditions across evolution.
Speaker
Angela Giangrande • IGBMC, CNRS UMR 7104 - Inserm U 1258, Illkirch, France
Scheduled for
Feb 20, 2024, 3:00 PM
Timezone
GMT+1
Neuroinflammation in Epilepsy: what have we learned from human brain tissue specimens ?
Epileptogenesis is a gradual and dynamic process leading to difficult-to-treat seizures. Several cellular, molecular, and pathophysiologic mechanisms, including the activation of inflammatory processes. The use of human brain tissue represents a crucial strategy to advance our understanding of the underlying neuropathology and the molecular and cellular basis of epilepsy and related cognitive and behavioral comorbidities, The mounting evidence obtained during the past decade has emphasized the critical role of inflammation in the pathophysiological processes implicated in a large spectrum of genetic and acquired forms of focal epilepsies. Dissecting the cellular and molecular mediators of the pathological immune responses and their convergent and divergent mechanisms, is a major requisite for delineating their role in the establishment of epileptogenic networks. The role of small regulatory molecules involved in the regulation of specific pro- and anti-inflammatory pathways and the crosstalk between neuroinflammation and oxidative stress will be addressed. The observations supporting the activation of both innate and adaptive immune responses in human focal epilepsy will be discussed and elaborated, highlighting specific inflammatory pathways as potential targets for antiepileptic, disease-modifying therapeutic strategies.
Speaker
Eleonora Aronica • Amsterdam UMC
Scheduled for
Oct 24, 2023, 6:00 PM
Timezone
GMT+1
The role of CNS microglia in health and disease
Microglia are the resident CNS macrophages of the brain parenchyma. They have many and opposing roles in health and disease, ranging from inflammatory to anti-inflammatory and protective functions, depending on the developmental stage and the disease context. In Multiple Sclerosis, microglia are involved to important hallmarks of the disease, such as inflammation, demyelination, axonal damage and remyelination, however the exact mechanisms controlling their transformation towards a protective or devastating phenotype during the disease progression remains largely unknown until now. We wish to understand how brain microglia respond to demyelinating insults and how their behaviour changes in recovery. To do so we developed a novel histopathological analysis approach in 3D and a cell-based analysis tool that when applied in the cuprizone model of demyelination revealed region- and disease- dependent changes in microglial dynamics in the brain grey matter during demyelination and remyelination. We now use similar approaches with the aim to unravel sensitive changes in microglial dynamics during neuroinflammation in the EAE model. Furthermore, we employ constitutive knockout and tamoxifen-inducible gene-targeting approaches, immunological techniques, genetics and bioinformatics and currently seek to clarify the specific role of the brain resident microglial NF-κB molecular pathway versus other tissue macrophages in EAE.
Speaker
Kyrargyri Vassiliki • Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
Scheduled for
Oct 24, 2023, 1:00 PM
Timezone
GMT+2
Immunosuppression for Parkinson's disease - a new therapeutic strategy?
Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.
Speaker
Caroline Williams-Gray • Department of Clinical Neurosciences, University of Cambridge
Scheduled for
May 29, 2023, 4:00 PM
Timezone
GMT
When to stop immune checkpoint inhibitor for malignant melanoma? Challenges in emulating target trials
Observational data have become a popular source of evidence for causal effects when no randomized controlled trial exists, or to supplement information provided by those. In practice, a wide range of designs and analytical choices exist, and one recent approach relies on the target trial emulation framework. This framework is particularly well suited to mimic what could be obtained in a specific randomized controlled trial, while avoiding time-related selection biases. In this abstract, we present how this framework could be useful to emulate trials in malignant melanoma, and the challenges faced when planning such a study using longitudinal observational data from a cohort study. More specifically, two questions are envisaged: duration of immune checkpoint inhibitors, and trials comparing treatment strategies for BRAF V600-mutant patients (targeted therapy as 1st line, followed by immunotherapy as 2nd line, vs. immunotherapy as 2nd line followed by targeted therapy as 1st line). Using data from 1027 participants to the MELBASE cohort, we detail the results for the emulation of a trial where immune checkpoint inhibitor would be stopped at 6 months vs. continued, in patients in response or with stable disease.
Speaker
Raphaël Porcher • Université Paris Cité and Université Sorbonne Paris Nord
Scheduled for
Jan 29, 2023, 11:00 AM
Timezone
GMT+1
Microglial efferocytosis: Diving into the Alzheimer's Disease gene pool
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer’s disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches." https://doi.org/10.1016/j.neuron.2022.10.015
Speaker
Carmen Romero-Molina & Francesca Garretti • Icahn School of Medicine at Mount Sinai
Scheduled for
Dec 19, 2022, 12:00 PM
Timezone
EDT
Protective microglial signaling in Alzheimer's Disease
Recent studies have begun to reveal critical roles for the brain’s professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aβ) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aβ deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer’s disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3β-signaling, and restrict Aβ phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aβ load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material." https://doi.org/10.1016/j.cell.2022.09.030
Speaker
Hannah Ennerfelt • Stanford University
Scheduled for
Dec 15, 2022, 12:00 PM
Timezone
EDT
Inflammation and Pregancy
Talk(1): Fetal and maternal NLRP3 signaling is required for preterm labor and birth. (DOI: 10.1172/jci.insight.158238) Talk(2): Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice (DOI: 10.1073/pnas.2123267119)
Speaker
Kenichiro Motomura & Nuriban Valero-Pacheco • Wayne State University and Rutgers University
Scheduled for
Dec 7, 2022, 5:00 PM
Timezone
EDT
Pro-regenerative functions of microglia in demyelinating diseases
Our goal is to understand why myelin repair fails in multiple sclerosis and to develop regenerative medicines for the nervous system. A central obstacle for progress in this area has been the complex biology underlying the response to CNS injury. Acute CNS damage is followed by a multicellular response that encompasses different cell types and spans different scales. Currently, we do not understand which factors determines lesion recovery. Failure of inflammation to resolve is a key underlying reason of poor regeneration, and one focus is therefore on the biology of microglia during de- and remyelination, and their cross talk to other cells, in particular oligodendrocytes and the progenitor cells. In addition, we are exploring the link between lipid metabolism and inflammation, and its role in the regulation of regeneration. I will report about our recent progress in our understanding of how microglia promote regeneration in the CNS.
Speaker
Mikael Simons • Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases, Technical University Munich, Germany
Scheduled for
Jun 13, 2022, 12:15 PM
Timezone
GMT+1
Social immunity in ants: disease defense of the colony
Social insects fight disease as a collective. Their colonies are protected against disease by the combination of the individual immune defenses of all colony members and their jointly performed nest- and colony-hygiene. This social immunity is achieved by cooperative behaviors to reduce pathogen load of the colony and to prevent transmission along the social interaction networks of colony members. Individual and social immunity interact: performance of sanitary care can affect future disease susceptibility, yet also vice versa, individuals differing in susceptibility adjust their sanitary care performance to their individual risk of infection. I present the integrated approach we use to understand how colony protection arises from the individual and collective actions of colony members and how it affects pathogen communities and hence disease ecology.
Speaker
Sylvia Cremer • Institute of Science and Technology Austria
Scheduled for
May 23, 2022, 4:00 PM
Timezone
GMT
Remembering Immunity, Central regulation of peripheral immune processes
Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.
Speaker
Asya Rolls • Technion, Israel Institute of Technology
Scheduled for
May 1, 2022, 11:00 AM
Timezone
GMT+1
Remembering immunity: Neuronal representation of immune responses
Accumulating data indicate that the brain can affect immunity, as evidenced, for example, by the effects of stress, stroke, and reward system activity on the peripheral immune system. However, our understanding of this neuroimmune interaction is still limited. Importantly, we do not know how the brain evaluates and represents the state of the immune system. In this talk, I will present our latest study from our lab, designed to test the existence of immune-related information in the brain and determine its relevance to immune regulation. We hypothesized that the InsCtx, specifically the posterior InsCtx (as a primary cortical site of interoception in the brain), is especially suited to contain such a representation of the immune system. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Moreover, using retrograde neuronal tracing, we found an anatomical efferent pathway linking these InsCtx neurons to the inflamed peripheral sites. Taken together, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.
Speaker
Tamar Koren • Rolls lab, Technion - Israel Institute of Technology
Scheduled for
Mar 29, 2022, 5:00 PM
Timezone
GMT+1
Reflex Regulation of Innate Immunity
Reflex circuits in the nervous system integrate changes in the environment with physiology. Compact clusters of brain neuron cell bodies, termed nuclei, are essential for receiving sensory input and for transmitting motor outputs to the body. These nucelii are critical relay stations which process incoming information and convert these signals to outgoing action potentials which regulate immune system functions. Thus, reflex neural circuits maintain parameters of immunological physiology within a narrow range optimal for health. Advances in neuroscience and immunology using optogenetics, pharmacogenetics, and functional mapping offer a new understanding of the importance of neural circuitry underlying immunity, and offer direct paths to new therapies.
Speaker
Kevin Tracey • Northwell Health
Scheduled for
Nov 7, 2021, 4:00 PM
Timezone
GMT
Mutation induced infection waves in diseases like COVID-19
After more than 4 million deaths worldwide, the ongoing vaccination to conquer the COVID-19 disease is now competing with the emergence of increasingly contagious mutations, repeatedly supplanting earlier strains. Following the near-absence of historical examples of the long-time evolution of infectious diseases under similar circumstances, models are crucial to exemplify possible scenarios. Accordingly, in the present work we systematically generalize the popular susceptible-infected-recovered model to account for mutations leading to repeatedly occurring new strains, which we coarse grain based on tools from statistical mechanics to derive a model predicting the most likely outcomes. The model predicts that mutations can induce a super exponential growth of infection numbers at early times, which self-amplify to giant infection waves which are caused by a positive feedback loop between infection numbers and mutations and lead to a simultaneous infection of the majority of the population. At later stages -- if vaccination progresses too slowly -- mutations can interrupt an ongoing decrease of infection numbers and can cause infection revivals which occur as single waves or even as whole wave trains featuring alternative periods of decreasing and increasing infection numbers. Our results might be useful for discussions regarding the importance of a release of vaccine-patents to reduce the risk of mutation-induced infection revivals but also to coordinate the release of measures following a downwards trend of infection numbers.
Speaker
Fabian Jan Schwarzendahl • Heinrich Heine University, Dusseldorf
Scheduled for
Oct 10, 2021, 9:00 AM
Timezone
PDT
Converging mechanisms of epileptogenesis after brain injury
Traumatic brain injury (TBI), a leading cause of acquired epilepsy, results in primary cellular injury as well as secondary neurophysiological and inflammatory responses which contribute to epileptogenesis. I will present our recent studies identifying a role for neuro-immune interactions, specifically, the innate immune receptor Toll-like receptor 4 (TLR4), in enhancing network excitability and cell loss in hippocampal dentate gyrus early after concussive brain injury. I will describe results indicating that the transient post-traumatic increases in dentate neurogenesis which occurs during the same early post-injury period augments dentate network excitability and epileptogenesis. I will provide evidence for the beneficial effects of targeting TLR4 and neurogenesis early after brain injury in limiting epileptogenesis. We will discuss potential mechanisms for convergence of the post-traumatic neuro-immune and neurogenic changes and the implications for therapies to reduce neurological deficits and epilepsy after brain injury.
Speaker
Viji Santhakumar • University of California, Riverside
Scheduled for
Oct 5, 2021, 5:00 PM
Timezone
GMT
Neuro-Immune Coupling: How the Immune System Sculpts Brain Circuitry
In this lecture, Dr Stevens will discuss recent work that implicates brain immune cells, called microglia, in sculpting of synaptic connections during development and their relevance to autism, schizophrenia and other brain disorders. Her recent work revealed a key role for microglia and a group of immune related molecules called complement in normal developmental synaptic pruning, a normal process required to establish precise brain wiring. Emerging evidence suggests aberrant regulation of this pruning pathway may contribute to synaptic and cognitive dysfunction in a host of brain disorders, including schizophrenia. Recent research has revealed that a person’s risk of schizophrenia is increased if they inherit specific variants in complement C4, gene plays a well-known role in the immune system but also helps sculpt developing synapses in the mouse visual system (Sekar et al., 2016). Together these findings may help explain known features of schizophrenia, including reduced numbers of synapses in key cortical regions and an adolescent age of onset that corresponds with developmentally timed waves of synaptic pruning in these regions. Stevens will discuss this and ongoing work to understand the mechanisms by which complement and microglia prune specific synapses in the brain. A deeper understanding of how these immune mechanisms mediate synaptic pruning may provide novel insight into how to protect synapses in autism and other brain disorders, including Alzheimer’s and Huntington’s Disease.
Speaker
Beth Stevens • Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
Scheduled for
Jun 20, 2021, 4:00 PM
Timezone
GMT
Regenerative Neuroimmunology - a stem cell perspective
There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.
Speaker
Stefano Pluchino • Department of Clinical Neurosciences, University of Cambridge
Scheduled for
May 31, 2021, 4:00 PM
Timezone
GMT
Innate immune response in brain pathologies: Lost in translation?
Inflammation is a key component of the innate immune response. Primarily designed to remove noxious agents and limit their detrimental effects, the prolonged and/or inappropriately scaled innate immune response may be detrimental to the host and lead to a chronic disease. Indeed, there is increasing evidence suggesting that a chronic deregulation of immunity may represent one of the key elements in the pathobiology of many brain disorders. Microglia are the principal immune cells of the brain. The consensus today is that once activated microglia/macrophages can acquire a wide repertoire of profiles ranging from the classical pro-inflammatory to alternative and protective phenotypes. Recently, we described a novel ribosome-based regulatory mechanism/checkpoint that controls innate immune gene translation and microglial activation involving RNA binding protein SRSF3. Here we will discuss the implications of SRSF3 and other endogenous immune regulators in deregulation of immunity observed in different models of brain pathologies. Furthermore, we will discuss whether targeting SRSF3 and mRNA translation may open novel avenues for therapeutic modulation of immune response in the brain.
Speaker
Jasna Kriz • Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval & CERVO Brain Research Centre, Québec, Canada
Scheduled for
May 20, 2021, 2:00 PM
Timezone
GMT+1