Events
Open full Events browserLoading...
Live and recorded talks from the researchers shaping this domain.
Internet interventions targeting grief symptoms
Web-based self-help interventions for coping with prolonged grief have established their efficacy. However, few programs address recent losses and investigate the effect of self-tailoring of the content. In an international project, the text-based self-help program LIVIA was adapted and complemented with an Embodied Conversational Agent, an initial risk assessment and a monitoring tool. The new program SOLENA was evaluated in three trials in Switzerland, the Netherlands and Portugal. The aim of the trials was to evaluate the clinical efficacy for reducing grief, depression and loneliness and to examine client satisfaction and technology acceptance. The talk will present the SOLENA program and report results of the Portuguese and Dutch trial as well as preliminary results of the Swiss RCT. The ongoing Swiss trial compares a standardised to a self-tailored delivery format and analyses clinical outcomes, the helpfulness of specific content and the working alliance. Finally, lessons learned in the development and evaluation of a web-based self-help intervention for older adults will be discusses.
Speaker
Jeannette Brodbeck • Fachhochschule Nordwestschweiz / University of Bern
Scheduled for
Sep 24, 2023, 1:00 PM
Timezone
GMT+1
Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation
Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.
Speaker
Zoe Christenson-Wick • Mount Sinai School of Medicine, NY, USA
Scheduled for
May 8, 2023, 10:00 AM
Timezone
EDT
A possible role of the posterior alpha as a railroad switcher between dorsal and ventral pathways
Suppose you are on your favorite touchscreen device consciously and deliberately deciding emails to read or delete. In other words, you are consciously and intentionally looking, tapping, and swiping. Now suppose that you are doing this while neuroscientists are recording your brain activity. Eventually, the neuroscientists are familiar enough with your brain activity and behavior that they run an experiment with subliminal cues which reveals that your looking, tapping, and swiping seem to be determined by a random switch in your brain. You are not aware of it, or its impact on your decisions or movements. Would these predictions undermine your sense of free will? Some have argued that it should. Although this inference from unreflective and/or random intention mechanisms to free will skepticism, may seem intuitive at first, there are already objections to it. So, even if this thought experiment is plausible, it may not actually undermine our sense of free will.
Speaker
Liad Mudrik/Walter Sinnott-Armstrong/Ivano Triggiani/Nick Byrd
Scheduled for
Jan 9, 2023, 9:00 AM
Timezone
PDT
Faking emotions and a therapeutic role for robots and chatbots: Ethics of using AI in psychotherapy
In recent years, there has been a proliferation of social robots and chatbots that are designed so that users make an emotional attachment with them. This talk will start by presenting the first such chatbot, a program called Eliza designed by Joseph Weizenbaum in the mid 1960s. Then we will look at some recent robots and chatbots with Eliza-like interfaces and examine their benefits as well as various ethical issues raised by deploying such systems.
Speaker
Bipin Indurkhya • Cognitive Science Department, Jagiellonian University, Kraków
Scheduled for
May 18, 2022, 4:00 PM
Timezone
GMT
Improving the identification of cardiometabolic risk in early psychosis
People with chronic schizophrenia die on average 10-15 years sooner than the general population, mostly due to physical comorbidity. While sociodemographic, chronic lifestyle and iatrogenic factors are important contributors to this comorbidity, a growing body of research is beginning to suggest that early signs of cardiometabolic dysfunction may be present from the onset of psychosis in some young adults, and may even be detectable before the onset of psychosis. Given that primary prevention is the best means to prevent the onset of more chronic and severe cardiometabolic phenotypes such as CVD, there is clear need to be able to identify young adults with psychosis who are most at risk of future adverse cardiometabolic outcomes, such that the most intensive interventions can be directed in an informed way to attenuate the risk or even prevent those adverse outcomes from occurring.In this talk, Ben will first outline some recent advances in our understanding of the association between cardiometabolic and schizophrenia spectrum disorders. He will then introduce the field of cardiometabolic risk prediction, and highlight how existing tools developed for older general population adults are unlikely to be suitable for young people with psychosis. Finally, he will discuss the current state of play and the future of the Psychosis Metabolic Risk Calculator (PsyMetRiC), a novel clinically useful cardiometabolic risk prediction algorithm tailored for young people with psychosis, which has been developed and externally validated using data from three psychosis early intervention services in the UK.
Speaker
Benjamin Perry • University of Cambridge, Department of Psychiatry
Scheduled for
Dec 7, 2021, 5:00 PM
Timezone
GMT
NMC4 Short Talk: What can 140,000 Reaches Tell Us About Demographic Contributions to Visuomotor Adaptation?
Motor learning is typically assessed in the lab, affording a high degree of control over the task environment. However, this level of control often comes at the cost of smaller sample sizes and a homogenous pool of participants (e.g. college students). To address this, we have designed a web-based motor learning experiment, making it possible to reach a larger, more diverse set of participants. As a proof-of-concept, we collected 1,581 participants completing a visuomotor rotation task, where participants controlled a visual cursor on the screen with their mouse and trackpad. Motor learning was indexed by how fast participants were able to compensate for a 45° rotation imposed between the cursor and their actual movement. Using a cross-validated LASSO regression, we found that motor learning varied significantly with the participant’s age and sex, and also strongly correlated with the location of the target, visual acuity, and satisfaction with the experiment. In contrast, participants' mouse and browser type were features eliminated by the model, indicating that motor performance was not influenced by variations in computer hardware and software. Together, this proof-of-concept study demonstrates how large datasets can generate important insights into the factors underlying motor learning.
Speaker
Hrach Asmerian • University of California, Berkeley
Scheduled for
Dec 1, 2021, 6:00 PM
Timezone
EDT
NMC4 Short Talk: Decoding finger movements from human posterior parietal cortex
Restoring hand function is a top priority for individuals with tetraplegia. This challenge motivates considerable research on brain-computer interfaces (BCIs), which bypass damaged neural pathways to control paralyzed or prosthetic limbs. Here, we demonstrate the BCI control of a prosthetic hand using intracortical recordings from the posterior parietal cortex (PPC). As part of an ongoing clinical trial, two participants with cervical spinal cord injury were each implanted with a 96-channel array in the left PPC. Across four sessions each, we recorded neural activity while they attempted to press individual fingers of the contralateral (right) hand. Single neurons modulated selectively for different finger movements. Offline, we accurately classified finger movements from neural firing rates using linear discriminant analysis (LDA) with cross-validation (accuracy = 90%; chance = 17%). Finally, the participants used the neural classifier online to control all five fingers of a BCI hand. Online control accuracy (86%; chance = 17%) exceeded previous state-of-the-art finger BCIs. Furthermore, offline, we could classify both flexion and extension of the right fingers, as well as flexion of all ten fingers. Our results indicate that neural recordings from PPC can be used to control prosthetic fingers, which may help contribute to a hand restoration strategy for people with tetraplegia.
Speaker
Charles Guan • California Institute of Technology
Scheduled for
Nov 30, 2021, 7:15 PM
Timezone
EDT
Advancing Brain-Computer Interfaces by adopting a neural population approach
Brain-computer interfaces (BCIs) have afforded paralysed users “mental control” of computer cursors and robots, and even of electrical stimulators that reanimate their own limbs. Most existing BCIs map the activity of hundreds of motor cortical neurons recorded with implanted electrodes into control signals to drive these devices. Despite these impressive advances, the field is facing a number of challenges that need to be overcome in order for BCIs to become widely used during daily living. In this talk, I will focus on two such challenges: 1) having BCIs that allow performing a broad range of actions; and 2) having BCIs whose performance is robust over long time periods. I will present recent studies from our group in which we apply neuroscientific findings to address both issues. This research is based on an emerging view about how the brain works. Our proposal is that brain function is not based on the independent modulation of the activity of single neurons, but rather on specific population-wide activity patters —which mathematically define a “neural manifold”. I will provide evidence in favour of such a neural manifold view of brain function, and illustrate how advances in systems neuroscience may be critical for the clinical success of BCIs.
Speaker
Juan Alvaro Gallego • Imperial College London
Scheduled for
Nov 29, 2021, 2:00 PM
Timezone
GMT
GuPPy, a Python toolbox for the analysis of fiber photometry data
Fiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be a challenge for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is provided as a Jupyter notebook, a well-commented interactive development environment (IDE) designed to operate across platforms. GuPPy presents the user with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs produced by GuPPy can be exported into various image formats for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.
Speaker
Talia Lerner • Northwestern University
Scheduled for
Nov 23, 2021, 12:00 PM
Timezone
GMT-3
Playing StarCraft and saving the world using multi-agent reinforcement learning!
This is my C-14 Impaler gauss rifle! There are many like it, but this one is mine!" - A terran marine If you have never heard of a terran marine before, then you have probably missed out on playing the very engaging and entertaining strategy computer game, StarCraft. However, don’t despair, because what we have in store might be even more exciting! In this interactive session, we will take you through, step-by-step, on how to train a team of terran marines to defeat a team of marines controlled by the built-in game AI in StarCraft II. How will we achieve this? Using multi-agent reinforcement learning (MARL). MARL is a useful framework for building distributed intelligent systems. In MARL, multiple agents are trained to act as individual decision-makers of some larger system, while learning to work as a team. We will show you how to use Mava (https://github.com/instadeepai/Mava), a newly released research framework for MARL to build a multi-agent learning system for StarCraft II. We will provide the necessary guidance, tools and background to understand the key concepts behind MARL, how to use Mava building blocks to build systems and how to train a system from scratch. We will conclude the session by briefly sharing various exciting real-world application areas for MARL at InstaDeep, such as large-scale autonomous train navigation and circuit board routing. These are problems that become exponentially more difficult to solve as they scale. Finally, we will argue that many of humanity’s most important practical problems are reminiscent of the ones just described. These include, for example, the need for sustainable management of distributed resources under the pressures of climate change, or efficient inventory control and supply routing in critical distribution networks, or robotic teams for rescue missions and exploration. We believe MARL has enormous potential to be applied in these areas and we hope to inspire you to get excited and interested in MARL and perhaps one day contribute to the field!
Speaker
InstaDeep
Scheduled for
Oct 28, 2021, 2:00 PM
Timezone
GMT+1
Navigating academia as an LGBTQIA+ neuroscientist
The ALBA Network is organizing a webinar on LGBTQIA+ inclusion and visibility. This special event will feature a panel of established scientists in brain research who identify as LGBTQIA+. Speaker will discuss their goals, challenges and successes while navigating academia as part of the LGBTQIA+ community. Registration is free but mandatory.
Speaker
ALBA Network
Scheduled for
Aug 25, 2021, 6:45 PM
Timezone
GMT+1
From 1D to 5D: Data-driven Discovery of Whole-brain Dynamic Connectivity in fMRI Data
The analysis of functional magnetic resonance imaging (fMRI) data can greatly benefit from flexible analytic approaches. In particular, the advent of data-driven approaches to identify whole-brain time-varying connectivity and activity has revealed a number of interesting relevant variation in the data which, when ignored, can provide misleading information. In this lecture I will provide a comparative introduction of a range of data-driven approaches to estimating time-varying connectivity. I will also present detailed examples where studies of both brain health and disorder have been advanced by approaches designed to capture and estimate time-varying information in resting fMRI data. I will review several exemplar data sets analyzed in different ways to demonstrate the complementarity as well as trade-offs of various modeling approaches to answer questions about brain function. Finally, I will review and provide examples of strategies for validating time-varying connectivity including simulations, multimodal imaging, and comparative prediction within clinical populations, among others. As part of the interactive aspect I will provide a hands-on guide to the dynamic functional network connectivity toolbox within the GIFT software, including an online didactic analytic decision tree to introduce the various concepts and decisions that need to be made when using such tools
Speaker
Vince Calhoun • Founding Director, Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA
Scheduled for
May 19, 2021, 10:00 AM
Timezone
PDT
ALBA-BIN Networking event: Black in (N)Euro
The ALBA Network and Black in Neuro are partnering to bring the Black neuroscientific community in Europe together. Are you a Black neuroscientist based in Europe? If so, join us for this casual online networking event. We will share our experience, stories and knowledge about what it is to be black in Europe while working in brain research. We will also discuss potential actions ALBA and BiN could take to provide better visibility to the community. This is a time to get to know each other, share, network and relate. Please register to receive the link to the zoom meeting.
Speaker
ALBA Network
Scheduled for
Mar 30, 2021, 6:00 PM
Timezone
GMT+1
Panel discussion: Practical advice for reproducibility in neuroscience
This virtual, interactive panel on reproducibility in neuroscience will focus on practical advice that researchers at all career stages could implement to improve the reproducibility of their work, from power analyses and pre-registering reports to selecting statistical tests and data sharing. The event will comprise introductions of our speakers and how they came to be advocates for reproducibility in science, followed by a 25-minute discussion on reproducibility, including practical advice for researchers on how to improve their data collection, analysis, and reporting, and then 25 minutes of audience Q&A. In total, the event will last one hour and 15 minutes. Afterwards, some of the speakers will join us for an informal chat and Q&A reserved only for students/postdocs.
Speaker
Dorothy Bishop, Verena Heise, Russ Poldrack, and Guillaume Rousselet • University of Oxford, Stanford University, University of Glasgow
Scheduled for
Nov 9, 2020, 4:00 PM
Timezone
GMT
Leveraging neural manifolds to advance brain-computer interfaces
Brain-computer interfaces (BCIs) have afforded paralysed users “mental control” of computer cursors and robots, and even of electrical stimulators that reanimate their own limbs. Most existing BCIs map the activity of hundreds of motor cortical neurons recorded with implanted electrodes into control signals to drive these devices. Despite these impressive advances, the field is facing a number of challenges that need to be overcome in order for BCIs to become widely used during daily living. In this talk, I will focus on two such challenges: 1) having BCIs that allow performing a broad range of actions; and 2) having BCIs whose performance is robust over long time periods. I will present recent studies from our group in which we apply neuroscientific findings to address both issues. This research is based on an emerging view about how the brain works. Our proposal is that brain function is not based on the independent modulation of the activity of single neurons, but rather on specific population-wide activity patters —which mathematically define a “neural manifold”. I will provide evidence in favour of such a neural manifold view of brain function, and illustrate how advances in systems neuroscience may be critical for the clinical success of BCIs.
Speaker
Juan Álvaro Gallego • Imperial College London
Scheduled for
Oct 8, 2020, 10:00 AM
Timezone
GMT
Working memory transforms goals into rewards
Humans continuously need to learn to make good choices – be it using a new video-conferencing set up, figuring out what questions to ask to successfully secure a reliable babysitter, or just selecting which location in a house is least likely to be interrupted by toddlers during work calls. However, the goals we seek to attain – such as using zoom successfully – are often vaguely defined and previously unexperienced, and in that sense cannot be known by us as being rewarding. We hypothesized that learning to make good choices in such situations nevertheless leverages reinforcement learning processes, and that executive functions in general, and working memory in particular, play a crucial role in defining the reward function for arbitrary outcomes in such a way that they become reinforcing. I will show results from a novel behavioral protocol, as well as preliminary computational and imaging evidence supporting our hypothesis.
Speaker
Anne Collins • UC Berkeley
Scheduled for
Aug 25, 2020, 4:00 PM
Timezone
GMT