Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

12 items
Seminar
PDT

Odd dynamics of living chiral crystals

The emergent dynamics exhibited by collections of living organisms often shows signatures of symmetries that are broken at the single-organism level. At the same time, organism development itself encompasses a well-coordinated sequence of symmetry breaking events that successively transform a single, nearly isotropic cell into an animal with well-defined body axis and various anatomical asymmetries. Combining these key aspects of collective phenomena and embryonic development, we describe here the spontaneous formation of hydrodynamically stabilized active crystals made of hundreds of starfish embryos that gather during early development near fluid surfaces. We describe a minimal hydrodynamic theory that is fully parameterized by experimental measurements of microscopic interactions among embryos. Using this theory, we can quantitatively describe the stability, formation and rotation of crystals and rationalize the emergence of mechanical properties that carry signatures of an odd elastic material. Our work thereby quantitatively connects developmental symmetry breaking events on the single-embryo level with remarkable macroscopic material properties of a novel living chiral crystal system.

Speaker

Alexander Mietke • MIT

Scheduled for

Aug 14, 2022, 9:00 AM

Timezone

PDT

Seminar
PDT

Exact coherent structures and transition to turbulence in a confined active nematic

Active matter describes a class of systems that are maintained far from equilibrium by driving forces acting on the constituent particles. Here I will focus on confined active nematics, which exhibit especially rich flow behavior, ranging from structured patterns in space and time to disordered turbulent flows. To understand this behavior, I will take a deterministic dynamical systems approach, beginning with the hydrodynamic equations for the active nematic. This approach reveals that the infinite-dimensional phase space of all possible flow configurations is populated by Exact Coherent Structures (ECS), which are exact solutions of the hydrodynamic equations with distinct and regular spatiotemporal structure; examples include unstable equilibria, periodic orbits, and traveling waves. The ECS are connected by dynamical pathways called invariant manifolds. The main hypothesis in this approach is that turbulence corresponds to a trajectory meandering in the phase space, transitioning between ECS by traveling on the invariant manifolds. Similar approaches have been successful in characterizing high Reynolds number turbulence of passive fluids. Here, I will present the first systematic study of active nematic ECS and their invariant manifolds and discuss their role in characterizing the phenomenon of active turbulence.

Speaker

Caleb Wagner • University of Nebraska-Lincoln

Scheduled for

Feb 27, 2022, 9:00 AM

Timezone

PDT

Seminar
PDT

Metachronal waves in swarms of nematode Turbatrix aceti

There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While analytical and numerical models of such systems are now abundant, no real-life examples have been shown to date. I will present an experimental investigation of the collective motion of the nematode Turbatrix aceti, which self-propel by body undulation. I will show that under favorable conditions these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves which, similar to the case of beating cilia, produce strong fluid flows. I will demonstrate that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. I will illustrate this by a practical example: showing that the force generated by the collectively moving nematodes is sufficient to change the mode of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength.

Speaker

Anton Peshkov • University of Rochester

Scheduled for

Nov 7, 2021, 9:00 AM

Timezone

PDT

Seminar
PDT

Growing in flows: from evolutionary dynamics to microbial jets

Biological systems can self-organize in complex structures, able to evolve and adapt to widely varying environmental conditions. Despite the importance of fluid flow for transporting and organizing populations, few laboratory systems exist to systematically investigate the impact of advection on their spatial evolutionary dynamics. In this talk, I will discuss how we can address this problem by studying the morphology and genetic spatial structure of microbial colonies growing on the surface of a viscous substrate. When grown on a liquid, I will show that S. cerevisiae (baker’s yeast) can behave like “active matter” and collectively generate a fluid flow many times larger than the unperturbed colony expansion speed, which in turn produces mechanical stresses and fragmentation of the initial colony. Combining laboratory experiments with numerical modeling, I will demonstrate that the coupling between metabolic activity and hydrodynamic flows can produce positive feedbacks and drive preferential growth phenomena leading to the formation of microbial jets. Our work provides rich opportunities to explore the interplay between hydrodynamics, growth and competition within a versatile system.

Speaker

Severine Atis • University of Chicago

Scheduled for

Sep 26, 2021, 9:00 AM

Timezone

PDT

Seminar
PDT

Theory of activity-powered interface

Interfaces and membranes are ubiquitous in cellular systems across various scales. From lipid membranes to the interfaces of biomolecular condensates inside the cell, these borders not only protect and segregate the inner components from the outside world, but also are actively participating in mechanical regulation and biochemical reaction of the cell. Being part of a living system, these interfaces (membranes) are usually active and away from equilibrium. Yet, it's still not clear how activity can tweak their equilibrium dynamics. Here, I will introduce a model system to tackle this problem. We put together a passive fluid and an active nematics, and study the behavior of this liquid-liquid interface. Whereas thermal fluctuation of such an interface is too weak to be observed, active stress can easily force the interface to fluctuate, overhang, and even break up. In the presence of a wall, the active phase exhibits superfluid-like behavior: it can climb up walls -- a phenomenon we call activity-induced wetting. I will show how to formulate theories to capture these phenomena, highlighting the nontrivial effects of active stress. Our work not only demonstrates that activity can introduce interesting features to an interface, but also sheds light on controlling interfacial properties using activity.

Speaker

Zhihong You • University of California, Santa Barbara

Scheduled for

Aug 29, 2021, 9:00 AM

Timezone

PDT

Seminar
GMT

Microorganism locomotion in viscoelastic fluids

Many microorganisms and cells function in complex (non-Newtonian) fluids, which are mixtures of different materials and exhibit both viscous and elastic stresses. For example, mammalian sperm swim through cervical mucus on their journey through the female reproductive tract, and they must penetrate the viscoelastic gel outside the ovum to fertilize. In micro-scale swimming the dynamics emerge from the coupled interactions between the complex rheology of the surrounding media and the passive and active body dynamics of the swimmer. We use computational models of swimmers in viscoelastic fluids to investigate and provide mechanistic explanations for emergent swimming behaviors. I will discuss how flexible filaments (such as flagella) can store energy from a viscoelastic fluid to gain stroke boosts due to fluid elasticity. I will also describe 3D simulations of model organisms such as C. Reinhardtii and mammalian sperm, where we use experimentally measured stroke data to separate naturally coupled stroke and fluid effects. We explore why strokes that are adapted to Newtonian fluid environments might not do well in viscoelastic environments.

Speaker

Becca Thomases • University of California Davis

Scheduled for

May 11, 2021, 4:00 PM

Timezone

GMT

Seminar
EDT

Flocks and crowds: a Gulliver travel

In the first part of my talk, combining experimental, numerical and theoretical results, I will explain how self-propelled colloidal particles self-organize in one of the most robust ordered state found in nature: flocks. I will explain how to describe macroscopic flocking motion as the spontaneous flows of an active fluid, and use this framework to elucidate the phase ordering dynamics of polar active matter. In the second part of my talk, I will show that the same tools and concepts can be effectively used to infer a hydrodynamic description of active fluids composed of particles 6 order of magnitude larger in size: pedestrian crowds.

Speaker

Denis Bartolo • ENS de Lyon

Scheduled for

May 4, 2021, 10:00 AM

Timezone

EDT

Seminar
GMT

Hydrodynamic shape of microorganisms: Generalised Jeffery orbits

'Shape' of microorganisms are diverse. However, we sometimes approximate them as a sphere or a spheroid when we mathematically model the hydrodynamics of motile and non-motile cells. Such a geometrical simplification can be theoretically validated for motions in a linear background flow, since the dynamics, known as the Jeffery orbit, only contain a single geometric parameter, called the Bretherton constant. In this talk, we generalise the Jeffery equations for a chiral axisymmetric object using the low-Reynolds-number hydrokinetic symmetry and then demonstrate that the dynamics of a certain type of chiral object in a fluid flow are characterised by a new chiral parameter in addition to the Bretherton constant. We also discuss how the generalised Jeffery orbits are applied to biased locomotion of bacteria in a bulk shear flow and we will share the idea of hydrodynamic `shape' of microorganisms to simplify the description of their dynamics.

Speaker

Kenta Ishimoto • Kyoto University

Scheduled for

Mar 16, 2021, 10:00 AM

Timezone

GMT

Seminar
GMT

Sperm Navigation: from hydrodynamic interactions to parameter estimation

Microorganisms can swim in a variety of environments, interacting with chemicals and other proteins in the fluid. In this talk, we will highlight recent computational methods and results for swimming efficiency and hydrodynamic interactions of swimmers in different fluid environments. Sperm are modeled via a centerline representation where forces are solved for using elastic rod theory. The method of regularized Stokeslets is used to solve the fluid-structure interaction where emergent swimming speeds can be compared to asymptotic analysis. In the case of fluids with extra proteins or cells that may act as friction, swimming speeds may be enhanced, and attraction may not occur. We will also highlight how parameter estimation techniques can be utilized to infer fluid and/or swimmer properties.

Speaker

Sarah Olson • Worcester Polytechnic Institute

Scheduled for

Mar 2, 2021, 4:00 PM

Timezone

GMT

Seminar
GMT

Imposed flow in active liquid crystals

Inspired by ongoing experiments on three dimensional active gels composed of sliding microtubule bundles, we study a few idealized problems in a minimal hydrodynamic model for active liquid crystals. Our aim is to use flow to determine the value of the coefficient of activity in a continuum theory. We consider the case of apolar active particles that form a disordered phase in the absence of flow, and study how activity affects the swimming speed of a prescribed swimmer, as well as the stability of a fluid interface. We also consider flows of active matter in channels or past immersed objects.

Speaker

Thomas Powers • Brown University

Scheduled for

Dec 15, 2020, 4:00 PM

Timezone

GMT

Seminar
GMT

The impact of elongation on transport in shear flow

I shall present two recent piece of work investigating how shape effects the transport of active particles in shear. Firstly we will consider the sedimentation of particles in 2D laminar flow fields of increasing complexity; and how insights from this can help explain why turbulence can enhance the sedimentation of negatively buoyant diatoms [1]. Secondly, we will consider the 3D transport of elongated active particles under the action of an aligning force (e.g. gyrotactic swimmers) in some simple flow fields; and will see how shape can influence the vertical distribution, for example changing the structure of thin layers [2]. [1] Enhanced sedimentation of elongated plankton in simple flows (2018). IMA Journal of Applied Mathematics W Clifton, RN Bearon, & MA Bees. [2] Elongation enhances migration through hydrodynamic shear (in Prep), RN Bearon & WM Durham.

Speaker

Rachel Bearon • University of Liverpool

Scheduled for

Nov 10, 2020, 4:00 PM

Timezone

GMT

Seminar
EDT

Spontaneous and driven active matter flows

Understanding individual and macroscopic transport properties of motile micro-organisms in complex environments is a timely question, relevant to many ecological, medical and technological situations. At the fundamental level, this question is also receiving a lot of attention as fluids loaded with swimming micro-organisms has become a rich domain of applications and a conceptual playground for the statistical physics of “active matter”. The existence of microscopic sources of energy borne by the motile character of these micro-swimmers is driving self-organization processes at the origin of original emergent phases and unconventional macroscopic properties leading to revisit many standard concepts in the physics of suspensions. In this presentation, I will report on a recent exploration on the question of spontaneous formation of large scale collective motion in relation with the rheological response of active suspensions. I will also present new experiments showing how the motility of bacteria can be controlled such as to extract work macroscopically.

Speaker

Eric Clement • PMMH-ESPCI and Sorbonne University, Paris

Scheduled for

Sep 22, 2020, 10:00 AM

Timezone

EDT