Events
Open full Events browserLoading...
Live and recorded talks from the researchers shaping this domain.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Speaker
Kim Stachenfeld • DeepMind, Columbia U
Scheduled for
Jul 8, 2025, 2:00 PM
Timezone
GMT
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Speaker
Sam Gershman, Jonathan Pillow, Kenji Doya • Harvard University; Princeton University; Okinawa Institute of Science and Technology
Scheduled for
Nov 28, 2024, 2:00 PM
Timezone
GMT+1
Brain circuits for spatial navigation
In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.
Speaker
Ann Hermundstad, Ila Fiete, Barbara Webb • Janelia Research Campus; MIT; University of Edinburgh
Scheduled for
Nov 28, 2024, 2:00 PM
Timezone
GMT+1
Brain-Wide Compositionality and Learning Dynamics in Biological Agents
Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.
Speaker
Kanaka Rajan • Harvard Medical School
Scheduled for
Nov 12, 2024, 2:00 PM
Timezone
GMT
Trackoscope: A low-cost, open, autonomous tracking microscope for long-term observations of microscale organisms
Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduce Trackoscope, an 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10μm to 2mm across a 325 square centimeter area for extended durations—ranging from hours to days—at high resolution. Utilizing Trackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion of Amoeba to bacterial hunting dynamics in Actinosphaerium, walking gait in Tardigrada, and binary fission in motile Blepharisma. Trackoscope is a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms.
Speaker
Priya Soneji • Georgia Institute of Technology
Scheduled for
Oct 7, 2024, 5:00 PM
Timezone
GMT
The multi-phase plasticity supporting winner effect
Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.
Speaker
Dayu Lin • NYU Neuroscience Institute, New York, USA
Scheduled for
May 14, 2024, 12:15 PM
Timezone
GMT+1
Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine
Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.
Speaker
Nelson Spruston • Janelia, Ashburn, USA
Scheduled for
Mar 5, 2024, 4:00 PM
Timezone
GMT+1
Tracking subjects' strategies in behavioural choice experiments at trial resolution
Psychology and neuroscience are increasingly looking to fine-grained analyses of decision-making behaviour, seeking to characterise not just the variation between subjects but also a subject's variability across time. When analysing the behaviour of each subject in a choice task, we ideally want to know not only when the subject has learnt the correct choice rule but also what the subject tried while learning. I introduce a simple but effective Bayesian approach to inferring the probability of different choice strategies at trial resolution. This can be used both for inferring when subjects learn, by tracking the probability of the strategy matching the target rule, and for inferring subjects use of exploratory strategies during learning. Applied to data from rodent and human decision tasks, we find learning occurs earlier and more often than estimated using classical approaches. Around both learning and changes in the rewarded rules the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that animals have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.
Speaker
Mark Humphries • University of Nottingham
Scheduled for
Dec 6, 2023, 1:00 PM
Timezone
GMT
Great ape interaction: Ladyginian but not Gricean
Non-human great apes inform one another in ways that can seem very humanlike. Especially in the gestural domain, their behavior exhibits many similarities with human communication, meeting widely used empirical criteria for intentionality. At the same time, there remain some manifest differences. How to account for these similarities and differences in a unified way remains a major challenge. This presentation will summarise the arguments developed in a recent paper with Christophe Heintz. We make a key distinction between the expression of intentions (Ladyginian) and the expression of specifically informative intentions (Gricean), and we situate this distinction within a ‘special case of’ framework for classifying different modes of attention manipulation. The paper also argues that the attested tendencies of great ape interaction—for instance, to be dyadic rather than triadic, to be about the here-and-now rather than ‘displaced’—are products of its Ladyginian but not Gricean character. I will reinterpret video footage of great ape gesture as Ladyginian but not Gricean, and distinguish several varieties of meaning that are continuous with one another. We conclude that the evolutionary origins of linguistic meaning lie in gradual changes in not communication systems as such, but rather in social cognition, and specifically in what modes of attention manipulation are enabled by a species’ cognitive phenotype: first Ladyginian and in turn Gricean. The second of these shifts rendered humans, and only humans, ‘language ready’.
Speaker
Thom Scott-Phillips • Institute for Logic, Cognition, Language and Information
Scheduled for
Nov 20, 2023, 6:00 PM
Timezone
GMT+3
Wildlife, Warriors and Women: Large Carnivore Conservation in Tanzania and Beyond
Professor Amy Dickman established is the joint CEO of Lion Landscapes, which works to help conserve wildlife in some of the most important biodiversity areas of Africa. These areas include some of the most important areas in the world for big cats, but also have an extremely high level of lion killing, as lions and other carnivores impose high costs on poverty-stricken local people. Amy and her team are working with local communities to reduce carnivore attacks, providing villagers with real benefits from carnivore presence, engaging warriors in conservation and training the next generation of local conservation leaders. It has been a challenging endeavour, given the remote location and secretive and hostile nature of the tribe responsible for most lion-killing. In her talk, Amy will discuss the significance of this project, the difficulties of working in an area where witchcraft and mythology abound, and the conservation successes that are already emerging from this important work.
Speaker
Amy Dickman • University of Oxford
Scheduled for
Nov 19, 2023, 10:30 AM
Timezone
GMT+1
Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task
Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.
Speaker
Albert Compte • IDIBAPS
Scheduled for
Nov 16, 2023, 12:30 PM
Timezone
EDT
Sex hormone regulation of neural gene expression
Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.
Speaker
Jessika Tollkuhn • Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
Scheduled for
Sep 11, 2023, 4:00 PM
Timezone
GMT
Decoding mental conflict between reward and curiosity in decision-making
Humans and animals are not always rational. They not only rationally exploit rewards but also explore an environment owing to their curiosity. However, the mechanism of such curiosity-driven irrational behavior is largely unknown. Here, we developed a decision-making model for a two-choice task based on the free energy principle, which is a theory integrating recognition and action selection. The model describes irrational behaviors depending on the curiosity level. We also proposed a machine learning method to decode temporal curiosity from behavioral data. By applying it to rat behavioral data, we found that the rat had negative curiosity, reflecting conservative selection sticking to more certain options and that the level of curiosity was upregulated by the expected future information obtained from an uncertain environment. Our decoding approach can be a fundamental tool for identifying the neural basis for reward–curiosity conflicts. Furthermore, it could be effective in diagnosing mental disorders.
Speaker
Naoki Honda • Hiroshima University
Scheduled for
Jul 9, 2023, 5:00 PM
Timezone
GMT+9
From pecking order to ketamine - neural mechanism of social and emotional behavior
Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.
Speaker
Hailan Hu • Zhejiang University School of Medicine, Hangzhou, China
Scheduled for
Jun 21, 2023, 12:15 PM
Timezone
GMT+1
Nature over Nurture: Functional neuronal circuits emerge in the absence of developmental activity
During development, the complex neuronal circuitry of the brain arises from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that neuronal activity plays a critical role in shaping circuits for behavior. Current AI technologies are modeled after the same principle: connections in an initial weight matrix are pruned and strengthened by activity-dependent signals until the network can sufficiently generalize a set of inputs into outputs. Here, we challenge these learning-dominated assumptions by quantifying the contribution of neuronal activity to the development of visually guided swimming behavior in larval zebrafish. Intriguingly, dark-rearing zebrafish revealed that visual experience has no effect on the emergence of the optomotor response (OMR). We then raised animals under conditions where neuronal activity was pharmacologically silenced from organogenesis onward using the sodium-channel blocker tricaine. Strikingly, after washout of the anesthetic, animals performed swim bouts and responded to visual stimuli with 75% accuracy in the OMR paradigm. After shorter periods of silenced activity OMR performance stayed above 90% accuracy, calling into question the importance and impact of classical critical periods for visual development. Detailed quantification of the emergence of functional circuit properties by brain-wide imaging experiments confirmed that neuronal circuits came ‘online’ fully tuned and without the requirement for activity-dependent plasticity. Thus, contrary to what you learned on your mother's knee, complex sensory guided behaviors can be wired up innately by activity-independent developmental mechanisms.
Speaker
Dániel L. Barabási • Engert lab, MCB Harvard University
Scheduled for
Apr 4, 2023, 5:35 PM
Timezone
GMT+1
Cognition in the Wild
What do nonhuman primates know about each other and their social environment, how do they allocate their attention, and what are the functional consequences of social decisions in natural settings? Addressing these questions is crucial to hone in on the co-evolution of cognition, social behaviour and communication, and ultimately the evolution of intelligence in the primate order. I will present results from field experimental and observational studies on free-ranging baboons, which tap into the cognitive abilities of these animals. Baboons are particularly valuable in this context as different species reveal substantial variation in social organization and degree of despotism. Field experiments revealed considerable variation in the allocation of social attention: while the competitive chacma baboons were highly sensitive to deviations from the social order, the highly tolerant Guinea baboons revealed a confirmation bias. This bias may be a result of the high gregariousness of the species, which puts a premium on ignoring social noise. Variation in despotism clearly impacted the use of signals to regulate social interactions. For instance, male-male interactions in chacma baboons mostly comprised dominance displays, while Guinea baboon males evolved elaborate greeting rituals that serve to confirm group membership and test social bonds. Strikingly, the structure of signal repertoires does not differ substantially between different baboon species. In conclusion, the motivational disposition to engage in affiliation or aggressiveness appears to be more malleable during evolution than structural elements of the behavioral repertoire; this insight is crucial for understanding the dynamics of social evolution.
Speaker
Julia Fischer • German Primate Center
Scheduled for
Mar 15, 2023, 6:00 PM
Timezone
GMT+3
Private oxytocin supply and its receptors in the hypothalamus for social avoidance learning
Many animals live in complex social groups. To survive, it is essential to know who to avoid and who to interact. Although naïve mice are naturally attracted to any adult conspecifics, a single defeat experience could elicit social avoidance towards the aggressor for days. The neural mechanisms underlying the behavior switch from social approach to social avoidance remains incompletely understood. Here, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin receptor (OXTR) expressing cells in the anterior subdivision of ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance learning. After defeat, aVMHvlOXTR cells drastically increase their responses to aggressor cues. This response change is functionally important as optogenetic activation of aVMHvlOXTR cells elicits time-locked social avoidance towards a benign social target whereas inactivating the cells suppresses defeat-induced social avoidance. Furthermore, OXTR in the aVMHvl is itself essential for the behavior change. Knocking out OXTR in the aVMHvl or antagonizing the receptor during defeat, but not during post-defeat social interaction, impairs defeat-induced social avoidance. aVMHvlOXTR receives its private supply of oxytocin from SOROXT cells. SOROXT is highly activated by the noxious somatosensory inputs associated with defeat. Oxytocin released from SOROXT depolarizes aVMHvlOXTR cells and facilitates their synaptic potentiation, and hence, increases aVMHvlOXTR cell responses to aggressor cues. Ablating SOROXT cells impairs defeat-induced social avoidance learning whereas activating the cells promotes social avoidance after a subthreshold defeat experience. Altogether, our study reveals an essential role of SOROXT-aVMHvlOXTR circuit in defeat-induced social learning and highlights the importance of hypothalamic oxytocin system in social ranking and its plasticity.
Speaker
Takuya Osakada • NYU
Scheduled for
Jan 30, 2023, 12:00 PM
Timezone
EDT
Sampling the environment with body-brain rhythms
Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?
Speaker
Antonio Criscuolo • Maastricht University
Scheduled for
Jan 24, 2023, 10:00 AM
Timezone
EDT
Roots of Analogy
Can nonhuman animals perceive the relation-between-relations? This intriguing question has been studied over the last 40 years; nonetheless, the extent to which nonhuman species can do so remains controversial. Here, I review empirical evidence suggesting that pigeons, parrots, crows, and baboons join humans in reliably acquiring and transferring relational matching-to-sample (RMTS). Many theorists consider that RMTS captures the essence of analogy, because basic to analogy is appreciating the ‘relation between relations.’ Factors affecting RMTS performance include: prior training experience, the entropy of the sample stimulus, and whether the items that serve as sample stimuli can also serve as choice stimuli.
Speaker
Edward Wasserman • The University of Iowa
Scheduled for
Jan 11, 2023, 11:00 AM
Timezone
CDT
Adaptation via innovation in the animal kingdom
Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.
Speaker
Kata Horváth • Eötvös Loránd University & Lund University
Scheduled for
Nov 23, 2022, 4:30 PM
Timezone
GMT+1