Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

16 items
Seminar
GMT+1

Gene regulatory mechanisms of neocortex development and evolution

The neocortex is considered to be the seat of higher cognitive functions in humans. During its evolution, most notably in humans, the neocortex has undergone considerable expansion, which is reflected by an increase in the number of neurons. Neocortical neurons are generated during development by neural stem and progenitor cells. Epigenetic mechanisms play a pivotal role in orchestrating the behaviour of stem cells during development. We are interested in the mechanisms that regulate gene expression in neural stem cells, which have implications for our understanding of neocortex development and evolution, neural stem cell regulation and neurodevelopmental disorders.

Speaker

Mareike Albert • Center for Regenerative Therapies, Dresden University of Technology, Germany

Scheduled for

Dec 11, 2024, 4:00 PM

Timezone

GMT+1

Seminar
GMT+1

Rett syndrome, MECP2 and therapeutic strategies

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.

Speaker

Rudolf Jaenisch • Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA

Scheduled for

Dec 10, 2024, 12:15 PM

Timezone

GMT+1

Seminar
GMT+1

Cellular and genetic mechanisms of cerebral cortex folding

One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.

Speaker

Víctor Borrell • Instituto de Neurociencias, Alicante

Scheduled for

Jan 16, 2024, 6:00 PM

Timezone

GMT+1

Seminar
GMT

Sex hormone regulation of neural gene expression

Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.

Speaker

Jessika Tollkuhn • Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

Scheduled for

Sep 11, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT+1

Epigenetic rewiring in Schinzel-Giedion syndrome

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

Speaker

Alessandro Sessa, PhD • San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit

Scheduled for

May 2, 2023, 5:00 PM

Timezone

GMT+1

Seminar
GMT

Epigenomic (re)programming of the brain and behavior by ovarian hormones

Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.

Speaker

Marija Kundakovic • Fordham University

Scheduled for

May 1, 2023, 4:00 PM

Timezone

GMT

Seminar
GMT+1

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

Speaker

Sara Zocher, PhD • German Center for Neurodegenerative Diseases (DZNE), Dresden

Scheduled for

Apr 11, 2023, 5:00 PM

Timezone

GMT+1

Seminar
GMT+1

Epigenome regulation in neocortex expansion and generation of neuronal subtypes

Evolutionarily, the expansion of the human neocortex accounts for many of the unique cognitive abilities of humans. This expansion appears to reflect the increased proliferative potential of basal progenitors (BPs) in mammalian evolution. Further cortical progenitors generate both glutamatergic excitatory neurons (ENs) and GABAergic inhibitory interneurons (INs) in human cortex, whereas they produce exclusively ENs in rodents. The increased proliferative capacity and neuronal subtype generation of cortical progenitors in mammalian evolution may have evolved through epigenetic alterations. However, whether or how the epigenome in cortical progenitors differs between humans and other species is unknown. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in amplification, neuronal subtype generation and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Furthermore, we found that the elevated H3 acetylation activates expression of IN genes in in developing mouse cortex and promote proliferation of IN progenitor-like cells in cortex of Pax6 mutant mouse models. Mechanistically, H3K9ac drives the BP amplification and proliferation of these IN progenitor-like cells by increasing expression of the evolutionarily regulated gene, TRNP1. Our findings demonstrate a previously unknown mechanism that controls neocortex expansion and generation of neuronal subtypes. Keywords: Cortical development, neurogenesis, basal progenitors, cortical size, gyrification, excitatory neuron, inhibitory interneuron, epigenetic profiling, epigenetic regulation, H3 acetylation, H3K9ac, TRNP1, PAX6

Speaker

Tran Tuoc, PhD • Ruhruniversität-Bochum, Humangenetik

Scheduled for

Aug 23, 2022, 1:00 PM

Timezone

GMT+1

Seminar
GMT+1

At the nexus of genes, aging and environment: Understanding transcriptomic and epigenomic regulation in Parkinson's disease

Parkinson’s Disease (PD), the most common neurodegenerative movement disorder, is based on a complex interplay between genetic predispositions, aging processes, and environmental influences. In order to better understand the gene-environment axis in PD, we pursue a multi-omics approach to comprehensively interrogate genome-wide changes in histone modifications, DNA methylation, and hydroxymethylation, accompanied by transcriptomic profiling in cell and animal models of PD as well as large patient cohorts. Furthermore, we assess the plasticity of epigenomic modifications under influence of environmental factors using longitudinal cohorts of sporadic PD cases as well as mouse models exposed to specific environmental factors. Here, we present gene expression changes in PD mouse models in context of aging as well as environmental enrichment and high-fat diet.

Speaker

Julia Schulze-Hentrich • Institute of Medical Genetics and Applied Genomics, University of Tübingen

Scheduled for

Jul 19, 2022, 5:00 PM

Timezone

GMT+1

Seminar
GMT+1

Dissecting the 3D regulatory landscape of the developing cerebral cortex with single-cell epigenomics

Understanding how different epigenetic layers are coordinated to facilitate robust lineage decisions during development is one of the fundamental questions in regulatory genomics. Using single-cell epigenomics coupled with cell-type specific high-throughput mapping of enhancer activity, DNA methylation and the 3D genome landscape in vivo, we dissected how the epigenome is rewired during cortical development. We identified and functionally validated key transcription factors such as Neurog2 which underlie regulatory dynamics and coordinate rewiring across multiple epigenetic layers to ensure robust lineage specification. This work showcases the power of high-throughput integrative genomics to dissect the molecular rules of cell fate decisions in the brain and more broadly, how to apply them to evolution and disease.

Speaker

Boyan Bonev, PhD • Ludwig-Maximilians-Universität München

Scheduled for

Mar 1, 2022, 5:00 PM

Timezone

GMT+1

Seminar
GMT+1

Epigenetic regulation of alternative splicing in the context of cocaine reward

Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.

Speaker

Elizabeth A Heller, PhD • The University of Pennsylvania, Penn Epigenetics Institute, Systems Pharmacology & Translational Therapeutics

Scheduled for

Oct 5, 2021, 5:00 PM

Timezone

GMT+1

Seminar
GMT+1

Integration of „environmental“ information in the neuronal epigenome

The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.

Speaker

Geraldine Zimmer-Bensch • Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen, Aachen, Germany

Scheduled for

Aug 24, 2021, 4:00 PM

Timezone

GMT+1

Seminar
GMT+1

Sex-Specific Brain Transcriptional Signatures in Human MDD and their Correlates in Mouse Models of Depression

Major depressive disorder (MDD) is a sexually dimorphic disease. This sexual dimorphism is believed to result from sex-specific molecular alterations affecting functional pathways regulating the capacity of men and women to cope with daily life stress differently. Transcriptional changes associated with epigenetic alterations have been observed in the brain of men and women with depression and similar changes have been reported in different animal models of stress-induced depressive-like behaviors. In fact, most of our knowledge of the biological basis of MDD is derived from studies of chronic stress models in rodents. However, while these models capture certain aspects of the features of MDD, the extent to which they reproduce the molecular pathology of the human syndrome remains unknown and the functional consequences of these changes on the neuronal networks controlling stress responses are poorly understood. During this presentation, we will first address the extent by which transcriptional signatures associated with MDD compares in men and women. We will then transition to the capacity of different mouse models of chronic stress to recapitulate some of the transcriptional alterations associated with the expression of MDD in both sexes. Finally, we will briefly elaborate on the functional consequences of these changes at the neuronal level and conclude with an integrative perspective on the contribution of sex-specific transcriptional profiles on the expression of stress responses and MDD in men and women.

Speaker

Benoit Labonté • Université Laval & Centre de Recherche CERVO, Québec, Canada

Scheduled for

Feb 11, 2021, 2:00 PM

Timezone

GMT+1

Seminar
GMT

Transposable element activation in Alzheimer's disease and related tauopathies

Transposable elements, known colloquially as ‘jumping genes’, constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. We have utilized fruit flies, mice and postmortem human brain samples to identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi and piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi and piRNA depletion and consequent transposable element dysregulation as a pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.

Speaker

Bess Frost • Barshop Institute for Longevity and Aging Studies

Scheduled for

Sep 30, 2020, 4:00 PM

Timezone

GMT

Seminar
GMT

Epigenetics and Dementia: Lessons From the 20-Year Indianapolis-Ibadan Dementia Study

Dementia is of global interest because of the rapid increase in both the number of individuals affected and the population at risk. It is essential that the risk factors be carefully delineated for the formulation of preventive strategies. Epigenetics refers to external modifications that turn genes "on" or "off”, and cross-cultural studies of migrant populations provide information on the interplay of environmental factors on genetic predisposition. The Indianapolis-Ibadan Dementia Study compared the prevalence, incidence and risk factors of dementia in African Americans and Yoruba to tease out the role of epigenetics in dementia. The presentation will provide details on biomarkers of dementia, vascular risk factors and the association with apolipoprotein E in the Yoruba. The purpose will be to inspire early career researchers on possibilities and research strategies applicable in African populations

Speaker

Adesola Ogunniyi • University of Ibadan

Scheduled for

Sep 28, 2020, 4:00 PM

Timezone

GMT

Seminar
GMT

Epigenetic Reprogramming of Taste by Diet

Diets rich in sugar, salt, and fat alter taste perception and food intake, leading to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of D. melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Importantly, half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.

Speaker

Monica Dus • University of Michigan

Scheduled for

Jul 19, 2020, 4:00 PM

Timezone

GMT