Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

20 items
Seminar
GMT+1

Wildlife, Warriors and Women: Large Carnivore Conservation in Tanzania and Beyond

Professor Amy Dickman established is the joint CEO of Lion Landscapes, which works to help conserve wildlife in some of the most important biodiversity areas of Africa. These areas include some of the most important areas in the world for big cats, but also have an extremely high level of lion killing, as lions and other carnivores impose high costs on poverty-stricken local people. Amy and her team are working with local communities to reduce carnivore attacks, providing villagers with real benefits from carnivore presence, engaging warriors in conservation and training the next generation of local conservation leaders. It has been a challenging endeavour, given the remote location and secretive and hostile nature of the tribe responsible for most lion-killing. In her talk, Amy will discuss the significance of this project, the difficulties of working in an area where witchcraft and mythology abound, and the conservation successes that are already emerging from this important work.

Speaker

Amy Dickman • University of Oxford

Scheduled for

Nov 19, 2023, 10:30 AM

Timezone

GMT+1

Seminar
GMT+1

Adaptation via innovation in the animal kingdom

Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.

Speaker

Kata Horváth • Eötvös Loránd University & Lund University

Scheduled for

Nov 23, 2022, 4:30 PM

Timezone

GMT+1

Seminar
GMT

Context-dependent motion processing in the retina

A critical function of sensory systems is to reliably extract ethologically relevant features from the complex natural environment. A classic model to study feature detection is the direction-selective circuit of the mammalian retina. In this talk, I will discuss our recent work on how visual contexts dynamically influence the neural processing of motion signals in the direction-selective circuit in the mouse retina.

Speaker

Wei Wei • University of Chicago

Scheduled for

Jun 7, 2022, 2:00 PM

Timezone

GMT

Seminar
GMT

Social immunity in ants: disease defense of the colony

Social insects fight disease as a collective. Their colonies are protected against disease by the combination of the individual immune defenses of all colony members and their jointly performed nest- and colony-hygiene. This social immunity is achieved by cooperative behaviors to reduce pathogen load of the colony and to prevent transmission along the social interaction networks of colony members. Individual and social immunity interact: performance of sanitary care can affect future disease susceptibility, yet also vice versa, individuals differing in susceptibility adjust their sanitary care performance to their individual risk of infection. I present the integrated approach we use to understand how colony protection arises from the individual and collective actions of colony members and how it affects pathogen communities and hence disease ecology.

Speaker

Sylvia Cremer • Institute of Science and Technology Austria

Scheduled for

May 23, 2022, 4:00 PM

Timezone

GMT

Seminar
PDT

Intrinsic Rhythms in a Giant Single-Celled Organism and the Interplay with Time-Dependent Drive, Explored via Self-Organized Macroscopic Waves

Living Systems often seem to follow, in addition to external constraints and interactions, an intrinsic predictive model of the world — a defining trait of Anticipatory Systems. Here we study rhythmic behaviour in Caulerpa, a marine green alga, which appears to predict the day/night light cycle. Caulerpa consists of differentiated organs resembling leaves, stems and roots. While an individual can exceed a meter in size, it is a single multinucleated giant cell. Active transport has been hypothesized to play a key role in organismal development. It has been an open question in the literature whether rhythmic transport phenomena in this organism are of autonomous circadian nature. Using Raspberry-Pi cameras, we track over weeks the morphogenesis of tens of samples concurrently, while tracing at resolution of tens of seconds the variation of the green coverage. The latter reveals waves propagating over centimeters within few hours, and is attributed to chloroplast redistribution at whole-organism scale. Our observations of algal segments regenerating under 12-hour light/dark cycles indicate that the initiation of the waves precedes the external light change. Using time-frequency analysis, we find that the temporal spectrum of these green pulses contains a circadian period. The latter persists over days even under constant illumination, indicative of its autonomous nature. We further explore the system under non-circadian periods, to reveal how the spectral content changes in response. Time-keeping and synchronization are recurring themes in biological research at various levels of description — from subcellular components to ecological systems. We present a seemingly primitive living system that exhibits apparent anticipatory behaviour. This research offers quantitative constraints for theoretical frameworks of such systems.

Speaker

Eldad Afik • California Institute of Technology

Scheduled for

Mar 27, 2022, 9:00 AM

Timezone

PDT

Seminar
GMT

Towards a Theory of Microbial Ecosystems

A major unresolved question in microbiome research is whether the complex ecological patterns observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly and a lack of theoretical tools for modeling diverse ecosystems. Here, I will present a simple ecological model of microbial communities that reproduces large-scale ecological patterns observed across multiple natural and experimental settings including compositional gradients, clustering by environment, diversity/harshness correlations, and nestedness. Surprisingly, our model works despite having a “random metabolisms” and “random consumer preferences”. This raises the natural of question of why random ecosystems can describe real-world experimental data. In the second, more theoretical part of the talk, I will answer this question by showing that when a community becomes diverse enough, it will always self-organize into a stable state whose properties are well captured by a “typical random ecosystems”.

Speaker

Pankaj Mehta • Boston University

Scheduled for

Dec 9, 2021, 3:00 PM

Timezone

GMT

Seminar
GMT

Worms use their brain to regulate their behavior and physiology to deal with the lethal threat of hydrogen peroxide

In this talk I will discuss our recent findings that sensory signals from the brain adjust the physiology and behavior of the nematode C. elegans, enabling this animal to deal with the lethal threat of hydrogen peroxide. Hydrogen peroxide (H2O2) is the most common chemical threat in the microbial battlefield. Prevention and repair of the damage that hydrogen peroxide inflicts on macromolecules are critical for health and survival. In the first part of the talk, I will discuss our findings that C. elegans represses their own H2O2 defenses in response to sensory perception of Escherichia coli, the nematode’s food source, because E. coli can deplete H2O2 from the local environment and thereby protect the nematodes. Thus, the E. coli self-defense mechanisms create a public good, an environment safe from the threat of H2O2, that benefits C. elegans. In the second part of the talk, I will discuss how the modulation of C. elegans’ sensory perception by the interplay of hydrogen peroxide and bacteria adjusts the nematode’s behavior to improve the nematode’s chances of finding a niche that provides both food and protection from hydrogen peroxide.

Speaker

Javier Apfeld • Northeastern University

Scheduled for

Nov 28, 2021, 4:00 PM

Timezone

GMT

Seminar
GMT

Predator-prey interactions: the avian visual sensory perspective

My research interests are centered on animal ecology, and more specifically include the following areas: visual ecology, behavioral ecology, and conservation biology, as well as the interactions between them. My research is question-driven. I answer my questions in a comprehensive manner, using a combination of empirical, theoretical, and comparative approaches. My model species are usually birds, but I have also worked with fish, mammals, amphibians, and insects. ​I was fortunate to enrich my education by attending Universities in different parts of the world. I did my undergraduate, specialized in ecology and biodiversity, at the "Universidad Nacional de Cordoba", Argentina. My Ph.D. was in animal ecology and conservation biology at the "Universidad Complutense de Madrid", Spain. My two post-docs were focused on behavioral ecology; the first one at University of Oxford (United Kingdom), and the second one at University of Minnesota (USA). I was an Assistant Professor at California State University Long Beach for almost six years. I am now a Full Professor of Biological Sciences at Purdue University.

Speaker

Esteban Fernandez • Purdue University

Scheduled for

Oct 3, 2021, 3:00 PM

Timezone

GMT

Seminar
PDT

Do leader cells drive collective behavior in Dictyostelium Discoideum amoeba colonies?

Dictyostelium Discoideum (DD) are a fascinating single-cellular organism. When nutrients are plentiful, the DD cells act as autonomous individuals foraging their local vicinity. At the onset of starvation, a few (<0.1%) cells begin communicating with others by emitting a spike in the chemoattractant protein cyclic-AMP. Nearby cells sense the chemical gradient and respond by moving toward it and emitting a cyclic-AMP spike of their own. Cyclic-AMP activity increases over time, and eventually a spiral wave emerges, attracting hundreds of thousands of cells to an aggregation center. How DD cells go from autonomous individuals to a collective entity remains an open question for more than 60 years--a question whose answer would shed light on the emergence of multi-cellular life. Recently, trans-scale imaging has allowed the ability to sense the cyclic-AMP activity at both cell and colony levels. Using both the images as well as toy simulation models, this research aims to clarify whether the activity at the colony level is in fact initiated by a few cells, which may be deemed "leader" or "pacemaker" cells. In this talk, I will demonstrate the use of information-theoretic techniques to classify leaders and followers based on trajectory data, as well as to infer the domain of interaction of leader cells. We validate the techniques on toy models where leaders and followers are known, and then try to answer the question in real data--do leader cells drive collective behavior in DD colonies?

Speaker

Sulimon Sattari • Hokkaido University

Scheduled for

Aug 1, 2021, 9:00 AM

Timezone

PDT

Seminar
GMT

Using opsin genes to see through the eyes of a fish

Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.

Speaker

Karen Carleton • University of Maryland

Scheduled for

Jul 25, 2021, 3:00 PM

Timezone

GMT

Seminar
PDT

Internal structure of honey bee swarms for mechanical stability and division of labor

The western honey bee (Apis mellifera) is a domesticated pollinator famous for living in highly social colonies. In the spring, thousands of worker bees and a queen fly from their hive in search of a new home. They self-assemble into a swarm that hangs from a tree branch for several days. We reconstruct the non-isotropic arrangement of worker bees inside swarms made up of 3000 - 8000 bees using x-ray computed tomography. Some bees are stationary and hang from the attachment board or link their bodies into hanging chains to support the swarm structure. The remaining bees use the chains as pathways to walk around the swarm, potentially to feed the queen or communicate with one another. The top layers of bees bear more weight per bee than the remainder of the swarm, suggesting that bees are optimizing for additional factors besides weight distribution. Despite not having a clear leader, honey bees are able to organize into a swarm that protects the queen and remains stable until scout bees locate a new hive.

Speaker

Olga Shishkov • Biofrontiers Institute, University of Colorado Boulder

Scheduled for

Jul 18, 2021, 9:00 AM

Timezone

PDT

Seminar
GMT+9

As soon as there was life there was danger

Organisms face challenges to survival throughout life. When we freeze or flee in danger, we often feel fear. Tracing the deep history of danger gives a different perspective. The first cells living billions of years ago had to detect and respond to danger in order to survive. Life is about not being dead, and behavior is a major way that organisms hold death off. Although behavior does not require a nervous system, complex organisms have brain circuits for detecting and responding to danger, the deep roots of which go back to the first cells. But these circuits do not make fear, and fear is not the cause of why we freeze or flee. Fear a human invention; a construct we use to account for what happens in our minds when we become aware that we are in harm’s way. This requires a brain that can personally know that it existed in the past, that it is the entity that might be harmed in the present, and that it will cease to exist it the future. If other animals have conscious experiences, they cannot have the kinds of conscious experiences we have because they do not have the kinds of brains we have. This is not meant as a denial of animal consciousness; it is simply a statement about the fact that every species has a different brain. Nor is it a declaration about the wonders of the human brain, since we have done some wonderful, but also horrific, things with our brains. In fact, we are on the way to a climatic disaster that will not, as some suggest, destroy the Earth. But it will make it inhabitable for our kind, and other organisms with high energy demands. Bacteria have made it for billions of years and will likely be fine. The rest is up for grabs, and, in a very real sense, up to us.

Speaker

Joseph LeDoux • New York University

Scheduled for

Jun 29, 2021, 7:00 AM

Timezone

GMT+9

Seminar
GMT+1

Investigating the sun compass in monarch butterflies (Danaus plexippus)

Every autumn, monarch butterflies migrate from North America to their overwintering sites in Central Mexico. To maintain their southward direction, these butterflies rely on celestial cues as orientation references. The position of the sun combined with additional skylight cues are integrated in the central complex, a region in the butterfly’s brain that acts as an internal compass. However, the central complex does not solely guide the butterflies on their migration but also helps monarchs in their non-migratory form manoeuvre on foraging trips through their habitat. By comparing the activity of input neurons of the central complex between migratory and non-migratory butterflies, we investigated how a different lifestyle affects the coding of orientation information in the brain.

Speaker

Tu Anh Nguyen Thi • el Jundi lab, University Würzburg

Scheduled for

Jun 1, 2021, 5:35 PM

Timezone

GMT+1

Seminar
GMT+1

Natural switches in sensory attention rapidly modulate hippocampal spatial codes

During natural behavior animals dynamically switch between different behaviors, yet little is known about how the brain performs behavioral-switches. Navigation is a complex dynamic behavior that enables testing these kind of behavioral switches: It requires the animal to know its own allocentric (world-centered) location within the environment, while also paying attention to incoming sudden events such as obstacles or other conspecifics – and therefore the animal may need to rapidly switch from representing its own allocentric position to egocentrically representing ‘things out-there’. Here we used an ethological task where two bats flew together in a very large environment (130 meters), and had to switch between two behaviors: (i) navigation, and (ii) obstacle-avoidance during ‘cross-over’ events with the other bat. Bats increased their echolocation click-rate before a cross-over, indicating spatial attention to the other bat. Hippocampal CA1 neurons represented the bat’s own position when flying alone (allocentric place-coding); surprisingly, when meeting the other bat, neurons switched very rapidly to jointly representing the inter-bat distance × position (egocentric × allocentric coding). This switching to a neuronal representation of the other bat was correlated on a trial-by-trial basis with the attention signal, as indexed by the bat’s echolocation calls – suggesting that sensory attention is controlling these major switches in neural coding. Interestingly, we found that in place-cells, the different place-fields of the same neuron could exhibit very different tuning to inter-bat distance – creating a non-separable coding of allocentric position × egocentric distance. Together, our results suggest that attentional switches during navigation – which in bats can be measured directly based on their echolocation signals – elicit rapid dynamics of hippocampal spatial coding. More broadly, this study demonstrates that during natural behavior, when animals often switch between different behaviors, neural circuits can rapidly and flexibly switch their core computations.

Speaker

Ayelet Sarel • Ulanovsky lab, Weizmann Institute of Science

Scheduled for

Jun 1, 2021, 5:00 PM

Timezone

GMT+1

Seminar
GMT+5:30

The neuroecological context of group living

Dr. Sean O'Donnell is a Professor of Biodiversity Earth & Environmental Science at Drexel University, USA. His neuroscience research focuses on how brain structure plasticity & evolution are affected by social behavior, mainly using insects as models. He is also interested in tropical ecology & thermal physiology. He conducts field research & teaches field courses in Central & South America, as well as in the Negev Desert in Israel.

Speaker

Sean O'Donnell • Drexel University

Scheduled for

May 3, 2021, 7:00 PM

Timezone

GMT+5:30

Seminar
GMT

Australian Bogong moths use a true stellar compass for long-distance navigation at night

Each spring, billions of Bogong moths escape hot conditions in different regions of southeast Australia by migrating over 1000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer. At the beginning of autumn the same individuals make a return migration to their breeding grounds to reproduce and die. To steer migration Bogong moths sense the Earth’s magnetic field and correlate its directional information with visual cues. In this presentation, we will show that a critically important visual cue is the distribution of starlight within the austral night sky. By tethering spring and autumn migratory moths in a flight simulator, we found that under natural dorsally-projected night skies, and in a nulled magnetic field (disabling the magnetic sense), moths flew in their seasonally appropriate migratory directions, turning in the opposite direction when the night sky was rotated 180°. Visual interneurons in the moth’s optic lobe and central brain responded vigorously to identical sky rotations. Migrating Bogong moths thus use the starry night sky as a true compass to distinguish geographic cardinal directions, the first invertebrate known to do so. These stellar cues are likely reinforced by the Earth’s magnetic field to create a robust compass mechanism for long-distance nocturnal navigation.

Speaker

Eric Warrant • University of Lund

Scheduled for

Apr 18, 2021, 3:00 PM

Timezone

GMT

Seminar
GMT

State-dependent egocentric and allocentric heading representation in the monarch butterfly sun compass

For spatial orientation, heading information can be processed in two different frames of reference, a self-centered egocentric or a viewpoint allocentric frame of reference. Using the most efficient frame of reference is in particular important if an animal migrates over large distances, as it the case for the monarch butterfly (Danaus plexippus). These butterflies employ a sun compass to travel over more than 4,000 kilometers to their destination in central Mexico. We developed tetrode recordings from the heading-direction network of tethered flying monarch butterflies that were allowed to orient with respect to a sun stimulus. We show that the neurons switch their frame of reference depending on the animal’s locomotion state. In quiescence, the heading-direction cells encode a sun bearing in an egocentric reference frame, while during active flight, the heading-direction is encoded within an allocentric reference frame. By switching to an allocentric frame of reference during flight, monarch butterflies convert the sun to a global compass cue for long-distance navigation, an ideal strategy for maintaining a migratory heading.

Speaker

Basil El Jundi • University of Wuerzburg

Scheduled for

Mar 30, 2021, 2:30 PM

Timezone

GMT

Seminar
GMT

How our biases may influence our study of visual modalities: Two tales from the sea

It has long been appreciated (and celebrated) that certain species have sensory capabilities that humans do not share, for example polarization, ultraviolet, and infrared vision. What is less appreciated however, is that our position as terrestrial human scientists can significantly affect our study of animal senses and signals, even within modalities that we do share. For example, our acute vision can lead us to over-interpret the relevance of fine patterns in animals with coarser vision, and our Cartesian heritage as scientists can lead us to divide sensory modalities into orthogonal parameters (e.g. hue and brightness for color vision), even though this division may not exist within the animal itself. This talk examines two cases from marine visual ecology where a reconsideration of our biases as sharp-eyed Cartesian land mammals can help address questions in visual ecology. The first case examines the enormous variation in visual acuity among animals with image-forming eyes, and focuses on how acknowledging the typically poorer resolving power of animals can help us interpret the function of color patterns in cleaner shrimp and their client fish. The second case examines the how the typical human division of polarized light stimuli into angle and degree of polarization is problematic, and how a physiologically relevant interpretation is both closer to the truth and resolves a number of issues, particularly when considering the propagation of polarized light

Speaker

Sönke Johnsen • Duke University

Scheduled for

Mar 14, 2021, 4:00 PM

Timezone

GMT

Seminar
EDT

Collective Ecophysiology and Physics of Social Insects

Collective behavior of organisms creates environmental micro-niches that buffer them from environmental fluctuations e.g., temperature, humidity, mechanical perturbations, etc., thus coupling organismal physiology, environmental physics, and population ecology. This talk will focus on a combination of biological experiments, theory, and computation to understand how a collective of bees can integrate physical and behavioral cues to attain a non-equilibrium steady state that allows them to resist and respond to environmental fluctuations of forces and flows. We analyze how bee clusters change their shape and connectivity and gain stability by spread-eagling themselves in response to mechanical perturbations. Similarly, we study how bees in a colony respond to environmental thermal perturbations by deploying a fanning strategy at the entrance that they use to create a forced ventilation stream that allows the bees to collectively maintain a constant hive temperature. When combined with quantitative analysis and computations in both systems, we integrate the sensing of the environmental cues (acceleration, temperature, flow) and convert them to behavioral outputs that allow the swarms to achieve a dynamic homeostasis.

Speaker

Orit Peleg • CU Boulder

Scheduled for

Jan 12, 2021, 12:00 PM

Timezone

EDT

Seminar
EDT

Dynamics of microbiota communities during physical perturbation

The consortium of microbes living in and on our bodies is intimately connected with human biology and deeply influenced by physical forces. Despite incredible gains in describing this community, and emerging knowledge of the mechanisms linking it to human health, understanding the basic physical properties and responses of this ecosystem has been comparatively neglected. Most diseases have significant physical effects on the gut; diarrhea alters osmolality, fever and cancer increase temperature, and bowel diseases affect pH. Furthermore, the gut itself is comprised of localized niches that differ significantly in their physical environment, and are inhabited by different commensal microbes. Understanding the impact of common physical factors is necessary for engineering robust microbiota members and communities; however, our knowledge of how they affect the gut ecosystem is poor. We are investigating how changes in osmolality affect the host and the microbial community and lead to mechanical shifts in the cellular environment. Osmotic perturbation is extremely prevalent in humans, caused by the use of laxatives, lactose intolerance, or celiac disease. In our studies we monitored osmotic shock to the microbiota using a comprehensive and novel approach, which combined in vivo experiments to imaging, physical measurements, computational analysis and highly controlled microfluidic experiments. By bridging several disciplines, we developed a mechanistic understanding of the processes involved in osmotic diarrhea, linking single-cell biophysical changes to large-scale community dynamics. Our results indicate that physical perturbations can profoundly and permanently change the competitive and ecological landscape of the gut, and affect the cell wall of bacteria differentially, depending on their mechanical characteristics.

Speaker

Carolina Tropini • UBC – Vancouver BC – Canada

Scheduled for

Jul 28, 2020, 12:30 PM

Timezone

EDT