Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

20 items
Seminar
GMT+1

Neural mechanisms of optimal performance

When we attend a demanding task, our performance is poor at low arousal (when drowsy) or high arousal (when anxious), but we achieve optimal performance at intermediate arousal. This celebrated Yerkes-Dodson inverted-U law relating performance and arousal is colloquially referred to as being "in the zone." In this talk, I will elucidate the behavioral and neural mechanisms linking arousal and performance under the Yerkes-Dodson law in a mouse model. During decision-making tasks, mice express an array of discrete strategies, whereby the optimal strategy occurs at intermediate arousal, measured by pupil, consistent with the inverted-U law. Population recordings from the auditory cortex (A1) further revealed that sound encoding is optimal at intermediate arousal. To explain the computational principle underlying this inverted-U law, we modeled the A1 circuit as a spiking network with excitatory/inhibitory clusters, based on the observed functional clusters in A1. Arousal induced a transition from a multi-attractor (low arousal) to a single attractor phase (high arousal), and performance is optimized at the transition point. The model also predicts stimulus- and arousal-induced modulations of neural variability, which we confirmed in the data. Our theory suggests that a single unifying dynamical principle, phase transitions in metastable dynamics, underlies both the inverted-U law of optimal performance and state-dependent modulations of neural variability.

Speaker

Luca Mazzucato • University of Oregon

Scheduled for

May 22, 2025, 2:00 PM

Timezone

GMT+1

Seminar
GMT

Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics

Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.

Speaker

Shaul Druckmann • Stanford department of Neurobiology and department of Psychiatry and Behavioral Sciences

Scheduled for

Apr 22, 2025, 4:00 PM

Timezone

GMT

Seminar
EDT

Circuit Mechanisms of Remote Memory

Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.

Speaker

Lauren DeNardo, PhD • Department of Physiology, David Geffen School of Medicine, UCLA

Scheduled for

Feb 10, 2025, 10:30 AM

Timezone

EDT

Seminar
GMT+11

Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions

Understanding how macroscale brain dynamics are shaped by microscale mechanisms is crucial in neuroscience. We investigate this relationship in animal models by directly manipulating cellular properties and measuring whole-brain responses using resting-state fMRI. Specifically, we explore the impact of chemogenetically neuromodulating D1 medium spiny neurons in the dorsomedial caudate putamen (CPdm) on BOLD dynamics within a striato-thalamo-cortical circuit in mice. Our findings indicate that CPdm neuromodulation alters BOLD dynamics in thalamic subregions projecting to the dorsomedial striatum, influencing both local and inter-regional connectivity in cortical areas. This study contributes to understanding structure–function relationships in shaping inter-regional communication between subcortical and cortical levels.

Speaker

Marija Markicevic • Yale

Scheduled for

Jan 18, 2024, 10:00 AM

Timezone

GMT+11

Seminar
GMT+11

Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing

The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.

Speaker

Pulin Gong • The University of Sydney

Scheduled for

Aug 10, 2023, 10:00 AM

Timezone

GMT+11

Seminar
GMT+1

Computational models of spinal locomotor circuitry

To effectively move in complex and changing environments, animals must control locomotor speed and gait, while precisely coordinating and adapting limb movements to the terrain. The underlying neuronal control is facilitated by circuits in the spinal cord, which integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. I will present a series of computational models investigating dynamics of central neuronal interactions as well as a neuromechanical model that integrates neuronal circuits with a model of the musculoskeletal system. These models closely reproduce speed-dependent gait expression and experimentally observed changes following manipulation of multiple classes of genetically-identified neuronal populations. I will discuss the utility of these models in providing experimentally testable predictions for future studies.

Speaker

Simon Danner • Drexel University, Philadelphia, USA

Scheduled for

Jun 13, 2023, 10:00 AM

Timezone

GMT+1

Seminar
EDT

Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation

Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.

Speaker

Zoe Christenson-Wick • Mount Sinai School of Medicine, NY, USA

Scheduled for

May 8, 2023, 10:00 AM

Timezone

EDT

Seminar
GMT+1

Quasicriticality and the quest for a framework of neuronal dynamics

Critical phenomena abound in nature, from forest fires and earthquakes to avalanches in sand and neuronal activity. Since the 2003 publication by Beggs & Plenz on neuronal avalanches, a growing body of work suggests that the brain homeostatically regulates itself to operate near a critical point where information processing is optimal. At this critical point, incoming activity is neither amplified (supercritical) nor damped (subcritical), but approximately preserved as it passes through neural networks. Departures from the critical point have been associated with conditions of poor neurological health like epilepsy, Alzheimer's disease, and depression. One complication that arises from this picture is that the critical point assumes no external input. But, biological neural networks are constantly bombarded by external input. How is then the brain able to homeostatically adapt near the critical point? We’ll see that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality while maintaining optimal properties for information transmission. We’ll see that simulations and experimental data confirm these predictions and describe new ones that could be tested soon. More importantly, we will see how this organizing principle could help in the search for biomarkers that could soon be tested in clinical studies.

Speaker

Leandro Jonathan Fosque • Beggs lab, IU Bloomington

Scheduled for

May 2, 2023, 5:35 PM

Timezone

GMT+1

Seminar
GMT+1

Signatures of criticality in efficient coding networks

The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory information processing (e.g., sensitivity to input) are optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient encoding. We consider a network of leaky integrate-and-fire neurons with synaptic transmission delays and input noise. Previously, it was shown that the performance of such networks varies non-monotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibits signatures of criticality, namely, the distribution of avalanche sizes follows a power law. When the noise amplitude is too low or too high for efficient coding, the network appears either super-critical or sub-critical, respectively. This result suggests that two influential, and previously disparate theories of neural processing optimization—efficient coding, and criticality—may be intimately related

Speaker

Shervin Safavi • Dayan lab, MPI for Biological Cybernetics

Scheduled for

May 2, 2023, 5:00 PM

Timezone

GMT+1

Seminar
EDT

The Neural Race Reduction: Dynamics of nonlinear representation learning in deep architectures

What is the relationship between task, network architecture, and population activity in nonlinear deep networks? I will describe the Gated Deep Linear Network framework, which schematizes how pathways of information flow impact learning dynamics within an architecture. Because of the gating, these networks can compute nonlinear functions of their input. We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning. The reduction takes the form of a neural race with an implicit bias towards shared representations, which then govern the model’s ability to systematically generalize, multi-task, and transfer. We show how appropriate network architectures can help factorize and abstract knowledge. Together, these results begin to shed light on the links between architecture, learning dynamics and network performance.

Speaker

Andrew Saxe • UCL

Scheduled for

Apr 13, 2023, 12:30 PM

Timezone

EDT

Seminar
GMT+1

Developmentally structured coactivity in the hippocampal trisynaptic loop

The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.

Speaker

Roman Huszár • Buzsáki Lab, New York University

Scheduled for

Apr 4, 2023, 5:00 PM

Timezone

GMT+1

Seminar
EDT

The strongly recurrent regime of cortical networks

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.

Speaker

David Dahmen • Jülich Research Centre, Germany

Scheduled for

Mar 28, 2023, 11:00 AM

Timezone

EDT

Seminar
GMT+1

Hippocampal network dynamics during impaired working memory in epileptic mice

Memory impairment is a common cognitive deficit in temporal lobe epilepsy (TLE). The hippocampus is severely altered in TLE exhibiting multiple anatomical changes that lead to a hyperexcitable network capable of generating frequent epileptic discharges and seizures. In this study we investigated whether hippocampal involvement in epileptic activity drives working memory deficits using bilateral LFP recordings from CA1 during task performance. We discovered that epileptic mice experienced focal rhythmic discharges (FRDs) while they performed the spatial working memory task. Spatial correlation analysis revealed that FRDs were often spatially stable on the maze and were most common around reward zones (25 ‰) and delay zones (50 ‰). Memory performance was correlated with stability of FRDs, suggesting that spatially unstable FRDs interfere with working memory codes in real time.

Speaker

Maryam Pasdarnavab • Ewell lab, University of Bonn

Scheduled for

Jan 31, 2023, 5:35 PM

Timezone

GMT+1

Seminar
EDT

Dynamics of cortical circuits: underlying mechanisms and computational implications

A signature feature of cortical circuits is the irregularity of neuronal firing, which manifests itself in the high temporal variability of spiking and the broad distribution of rates. Theoretical works have shown that this feature emerges dynamically in network models if coupling between cells is strong, i.e. if the mean number of synapses per neuron K is large and synaptic efficacy is of order 1/\sqrt{K}. However, the degree to which these models capture the mechanisms underlying neuronal firing in cortical circuits is not fully understood. Results have been derived using neuron models with current-based synapses, i.e. neglecting the dependence of synaptic current on the membrane potential, and an understanding of how irregular firing emerges in models with conductance-based synapses is still lacking. Moreover, at odds with the nonlinear responses to multiple stimuli observed in cortex, network models with strongly coupled cells respond linearly to inputs. In this talk, I will discuss the emergence of irregular firing and nonlinear response in networks of leaky integrate-and-fire neurons. First, I will show that, when synapses are conductance-based, irregular firing emerges if synaptic efficacy is of order 1/\log(K) and, unlike in current-based models, persists even under the large heterogeneity of connections which has been reported experimentally. I will then describe an analysis of neural responses as a function of coupling strength and show that, while a linear input-output relation is ubiquitous at strong coupling, nonlinear responses are prominent at moderate coupling. I will conclude by discussing experimental evidence of moderate coupling and loose balance in the mouse cortex.

Speaker

Alessandro Sanzeni • Bocconi University, Milano

Scheduled for

Jan 24, 2023, 11:00 AM

Timezone

EDT

Seminar
GMT+1

Extracting computational mechanisms from neural data using low-rank RNNs

An influential theory in systems neuroscience suggests that brain function can be understood through low-dimensional dynamics [Vyas et al 2020]. However, a challenge in this framework is that a single computational task may involve a range of dynamic processes. To understand which processes are at play in the brain, it is important to use data on neural activity to constrain models. In this study, we present a method for extracting low-dimensional dynamics from data using low-rank recurrent neural networks (lrRNNs), a highly expressive and understandable type of model [Mastrogiuseppe & Ostojic 2018, Dubreuil, Valente et al. 2022]. We first test our approach using synthetic data created from full-rank RNNs that have been trained on various brain tasks. We find that lrRNNs fitted to neural activity allow us to identify the collective computational processes and make new predictions for inactivations in the original RNNs. We then apply our method to data recorded from the prefrontal cortex of primates during a context-dependent decision-making task. Our approach enables us to assign computational roles to the different latent variables and provides a mechanistic model of the recorded dynamics, which can be used to perform in silico experiments like inactivations and provide testable predictions.

Speaker

Adrian Valente • Ecole Normale Supérieure

Scheduled for

Jan 10, 2023, 3:00 PM

Timezone

GMT+1

Seminar
EDT

Neural networks in the replica-mean field limits

In this talk, we propose to decipher the activity of neural networks via a “multiply and conquer” approach. This approach considers limit networks made of infinitely many replicas with the same basic neural structure. The key point is that these so-called replica-mean-field networks are in fact simplified, tractable versions of neural networks that retain important features of the finite network structure of interest. The finite size of neuronal populations and synaptic interactions is a core determinant of neural dynamics, being responsible for non-zero correlation in the spiking activity and for finite transition rates between metastable neural states. Theoretically, we develop our replica framework by expanding on ideas from the theory of communication networks rather than from statistical physics to establish Poissonian mean-field limits for spiking networks. Computationally, we leverage our original replica approach to characterize the stationary spiking activity of various network models via reduction to tractable functional equations. We conclude by discussing perspectives about how to use our replica framework to probe nontrivial regimes of spiking correlations and transition rates between metastable neural states.

Speaker

Thibaud Taillefumier • The University of Texas at Austin

Scheduled for

Nov 29, 2022, 11:00 AM

Timezone

EDT

Seminar
GMT+1

Bridging the gap between artificial models and cortical circuits

Artificial neural networks simplify complex biological circuits into tractable models for computational exploration and experimentation. However, the simplification of artificial models also undermines their applicability to real brain dynamics. Typical efforts to address this mismatch add complexity to increasingly unwieldy models. Here, we take a different approach; by reducing the complexity of a biological cortical culture, we aim to distil the essential factors of neuronal dynamics and plasticity. We leverage recent advances in growing neurons from human induced pluripotent stem cells (hiPSCs) to analyse ex vivo cortical cultures with only two distinct excitatory and inhibitory neuron populations. Over 6 weeks of development, we record from thousands of neurons using high-density microelectrode arrays (HD-MEAs) that allow access to individual neurons and the broader population dynamics. We compare these dynamics to two-population artificial networks of single-compartment neurons with random sparse connections and show that they produce similar dynamics. Specifically, our model captures the firing and bursting statistics of the cultures. Moreover, tightly integrating models and cultures allows us to evaluate the impact of changing architectures over weeks of development, with and without external stimuli. Broadly, the use of simplified cortical cultures enables us to use the repertoire of theoretical neuroscience techniques established over the past decades on artificial network models. Our approach of deriving neural networks from human cells also allows us, for the first time, to directly compare neural dynamics of disease and control. We found that cultures e.g. from epilepsy patients tended to have increasingly more avalanches of synchronous activity over weeks of development, in contrast to the control cultures. Next, we will test possible interventions, in silico and in vitro, in a drive for personalised approaches to medical care. This work starts bridging an important theoretical-experimental neuroscience gap for advancing our understanding of mammalian neuron dynamics.

Speaker

C. B. Currin • IST Austria

Scheduled for

Nov 9, 2022, 5:55 PM

Timezone

GMT+1

Seminar
EDT

Shallow networks run deep: How peripheral preprocessing facilitates odor classification

Drosophila olfactory sensory hairs ("sensilla") typically house two olfactory receptor neurons (ORNs) which can laterally inhibit each other via electrical ("ephaptic") coupling. ORN pairing is highly stereotyped and genetically determined. Thus, olfactory signals arriving in the Antennal Lobe (AL) have been pre-processed by a fixed and shallow network at the periphery. To uncover the functional significance of this organization, we developed a nonlinear phenomenological model of asymmetrically coupled ORNs responding to odor mixture stimuli. We derived an analytical solution to the ORNs’ dynamics, which shows that the peripheral network can extract the valence of specific odor mixtures via transient amplification. Our model predicts that for efficient read-out of the amplified valence signal there must exist specific patterns of downstream connectivity that reflect the organization at the periphery. Analysis of AL→Lateral Horn (LH) fly connectomic data reveals evidence directly supporting this prediction. We further studied the effect of ephaptic coupling on olfactory processing in the AL→Mushroom Body (MB) pathway. We show that stereotyped ephaptic interactions between ORNs lead to a clustered odor representation of glomerular responses. Such clustering in the AL is an essential assumption of theoretical studies on odor recognition in the MB. Together our work shows that preprocessing of olfactory stimuli by a fixed and shallow network increases sensitivity to specific odor mixtures, and aids in the learning of novel olfactory stimuli. Work led by Palka Puri, in collaboration with Chih-Ying Su and Shiuan-Tze Wu.

Speaker

Yonatan Aljadeff • University of California, San Diego (UCSD)

Scheduled for

Nov 8, 2022, 11:00 AM

Timezone

EDT

Seminar
GMT+1

Nonlinear computations in spiking neural networks through multiplicative synapses

The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While recurrent spiking networks implementing linear computations can be directly derived and easily understood (e.g., in the spike coding network (SCN) framework), the connectivity required for nonlinear computations can be harder to interpret, as they require additional non-linearities (e.g., dendritic or synaptic) weighted through supervised training. Here we extend the SCN framework to directly implement any polynomial dynamical system. This results in networks requiring multiplicative synapses, which we term the multiplicative spike coding network (mSCN). We demonstrate how the required connectivity for several nonlinear dynamical systems can be directly derived and implemented in mSCNs, without training. We also show how to precisely carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work provides an alternative method for implementing nonlinear computations in spiking neural networks, while keeping all the attractive features of standard SCNs such as robustness, irregular and sparse firing, and interpretable connectivity. Finally, we discuss the biological plausibility of mSCNs, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.

Speaker

M. Nardin • IST Austria

Scheduled for

Nov 8, 2022, 3:15 PM

Timezone

GMT+1

Seminar
GMT+1

Setting network states via the dynamics of action potential generation

To understand neural computation and the dynamics in the brain, we usually focus on the connectivity among neurons. In contrast, the properties of single neurons are often thought to be negligible, at least as far as the activity of networks is concerned. In this talk, I will contradict this notion and demonstrate how the biophysics of action-potential generation can have a decisive impact on network behaviour. Our recent theoretical work shows that, among regularly firing neurons, the somewhat unattended homoclinic type (characterized by a spike onset via a saddle homoclinic orbit bifurcation) particularly stands out: First, spikes of this type foster specific network states - synchronization in inhibitory and splayed-out/frustrated states in excitatory networks. Second, homoclinic spikes can easily be induced by changes in a variety of physiological parameters (like temperature, extracellular potassium, or dendritic morphology). As a consequence, such parameter changes can even induce switches in network states, solely based on a modification of cellular voltage dynamics. I will provide first experimental evidence and discuss functional consequences of homoclinic spikes for the design of efficient pattern-generating motor circuits in insects as well as for mammalian pathologies like febrile seizures. Our analysis predicts an interesting role for homoclinic action potentials as an integral part of brain dynamics in both health and disease.

Speaker

Susanne Schreiber • Humboldt University Berlin, Germany

Scheduled for

Oct 4, 2022, 4:00 PM

Timezone

GMT+1