← Back

Visual Perception

Topic spotlight
TopicPsychology

visual perception

Discover seminars, jobs, and research tagged with visual perception across Psychology.
3 curated items3 Seminars
Updated almost 3 years ago
3 items · visual perception

Latest

3 results
SeminarPsychology

A Better Method to Quantify Perceptual Thresholds : Parameter-free, Model-free, Adaptive procedures

Julien Audiffren
University of Fribourg
Mar 1, 2023

The ‘quantification’ of perception is arguably both one of the most important and most difficult aspects of perception study. This is particularly true in visual perception, in which the evaluation of the perceptual threshold is a pillar of the experimental process. The choice of the correct adaptive psychometric procedure, as well as the selection of the proper parameters, is a difficult but key aspect of the experimental protocol. For instance, Bayesian methods such as QUEST, require the a priori choice of a family of functions (e.g. Gaussian), which is rarely known before the experiment, as well as the specification of multiple parameters. Importantly, the choice of an ill-fitted function or parameters will induce costly mistakes and errors in the experimental process. In this talk we discuss the existing methods and introduce a new adaptive procedure to solve this problem, named, ZOOM (Zooming Optimistic Optimization of Models), based on recent advances in optimization and statistical learning. Compared to existing approaches, ZOOM is completely parameter free and model-free, i.e. can be applied on any arbitrary psychometric problem. Moreover, ZOOM parameters are self-tuned, thus do not need to be manually chosen using heuristics (eg. step size in the Staircase method), preventing further errors. Finally, ZOOM is based on state-of-the-art optimization theory, providing strong mathematical guarantees that are missing from many of its alternatives, while being the most accurate and robust in real life conditions. In our experiments and simulations, ZOOM was found to be significantly better than its alternative, in particular for difficult psychometric functions or when the parameters when not properly chosen. ZOOM is open source, and its implementation is freely available on the web. Given these advantages and its ease of use, we argue that ZOOM can improve the process of many psychophysics experiments.

SeminarPsychology

Disentangling neural correlates of consciousness and task relevance using EEG and fMRI

Torge Dellert
Westfälischen Wilhelms-Universität (WWU) Münster
Oct 12, 2022

How does our brain generate consciousness, that is, the subjective experience of what it is like to see face or hear a sound? Do we become aware of a stimulus during early sensory processing or only later when information is shared in a wide-spread fronto-parietal network? Neural correlates of consciousness are typically identified by comparing brain activity when a constant stimulus (e.g., a face) is perceived versus not perceived. However, in most previous experiments, conscious perception was systematically confounded with post-perceptual processes such as decision-making and report. In this talk, I will present recent EEG and fMRI studies dissociating neural correlates of consciousness and task-related processing in visual and auditory perception. Our results suggest that consciousness emerges during early sensory processing, while late, fronto-parietal activity is associated with post-perceptual processes rather than awareness. These findings challenge predominant theories of consciousness and highlight the importance of considering task relevance as a confound across different neuroscientific methods, experimental paradigms and sensory modalities.

SeminarPsychology

Perception during visual disruptions

Grace Edwards & Lina Teichmann
NIH/NIMH, Laboratory of Brain & Cognition
Jun 13, 2022

Visual perception is perceived as continuous despite frequent disruptions in our visual environment. For example, internal events, such as saccadic eye-movements, and external events, such as object occlusion temporarily prevent visual information from reaching the brain. Combining evidence from these two models of visual disruption (occlusion and saccades), we will describe what information is maintained and how it is updated across the sensory interruption.   Lina Teichmann will focus on dynamic occlusion and demonstrate how object motion is processed through perceptual gaps. Grace Edwards will then describe what pre-saccadic information is maintained across a saccade and how it interacts with post-saccadic processing in retinotopically relevant areas of the early visual cortex. Both occlusion and saccades provide a window into how the brain bridges perceptual disruptions. Our evidence thus far suggests a role for extrapolation, integration, and potentially suppression in both models. Combining evidence from these typically separate fields enables us to determine if there is a set of mechanisms which support visual processing during visual disruptions in general.

visual perception coverage

3 items

Seminar3
Domain spotlight

Explore how visual perception research is advancing inside Psychology.

Visit domain