Loading...

Filters
Sort by
Seminars & Colloquia

Live and recorded talks from the researchers shaping this domain.

20 items
Seminar
GMT+1

Neural circuits underlying sleep structure and functions

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

Speaker

Antoine Adamantidis • University of Bern

Scheduled for

Jun 12, 2025, 11:00 AM

Timezone

GMT+1

Seminar
GMT+1

Restoring Sight to the Blind: Effects of Structural and Functional Plasticity

Visual restoration after decades of blindness is now becoming possible by means of retinal and cortical prostheses, as well as emerging stem cell and gene therapeutic approaches. After restoring visual perception, however, a key question remains. Are there optimal means and methods for retraining the visual cortex to process visual inputs, and for learning or relearning to “see”? Up to this point, it has been largely assumed that if the sensory loss is visual, then the rehabilitation focus should also be primarily visual. However, the other senses play a key role in visual rehabilitation due to the plastic repurposing of visual cortex during blindness by audition and somatosensation, and also to the reintegration of restored vision with the other senses. I will present multisensory neuroimaging results, cortical thickness changes, as well as behavioral outcomes for patients with Retinitis Pigmentosa (RP), which causes blindness by destroying photoreceptors in the retina. These patients have had their vision partially restored by the implantation of a retinal prosthesis, which electrically stimulates still viable retinal ganglion cells in the eye. Our multisensory and structural neuroimaging and behavioral results suggest a new, holistic concept of visual rehabilitation that leverages rather than neglects audition, somatosensation, and other sensory modalities.

Speaker

Noelle Stiles • Rutgers University

Scheduled for

May 21, 2025, 4:00 PM

Timezone

GMT+1

Seminar
GMT+1

Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury

Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..

Speaker

Franco Pestilli • University of Texas, Austin, USA

Scheduled for

May 12, 2025, 12:00 PM

Timezone

GMT+1

Seminar
GMT+1

Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake

Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.

Speaker

Casey Becker • University of Pittsburgh

Scheduled for

Apr 15, 2025, 4:00 PM

Timezone

GMT+1

Seminar
EDT

Structural & Functional Neuroplasticity in Children with Hemiplegia

About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.

Speaker

Christos Papadelis • University of Texas at Arlington

Scheduled for

Feb 20, 2025, 12:00 PM

Timezone

EDT

Seminar
EDT

Circuit Mechanisms of Remote Memory

Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.

Speaker

Lauren DeNardo, PhD • Department of Physiology, David Geffen School of Medicine, UCLA

Scheduled for

Feb 10, 2025, 10:30 AM

Timezone

EDT

Seminar
PDT

Analyzing Network-Level Brain Processing and Plasticity Using Molecular Neuroimaging

Behavior and cognition depend on the integrated action of neural structures and populations distributed throughout the brain. We recently developed a set of molecular imaging tools that enable multiregional processing and plasticity in neural networks to be studied at a brain-wide scale in rodents and nonhuman primates. Here we will describe how a novel genetically encoded activity reporter enables information flow in virally labeled neural circuitry to be monitored by fMRI. Using the reporter to perform functional imaging of synaptically defined neural populations in the rat somatosensory system, we show how activity is transformed within brain regions to yield characteristics specific to distinct output projections. We also show how this approach enables regional activity to be modeled in terms of inputs, in a paradigm that we are extending to address circuit-level origins of functional specialization in marmoset brains. In the second part of the talk, we will discuss how another genetic tool for MRI enables systematic studies of the relationship between anatomical and functional connectivity in the mouse brain. We show that variations in physical and functional connectivity can be dissociated both across individual subjects and over experience. We also use the tool to examine brain-wide relationships between plasticity and activity during an opioid treatment. This work demonstrates the possibility of studying diverse brain-wide processing phenomena using molecular neuroimaging.

Speaker

Alan Jasanoff • Massachusetts Institute of Technology

Scheduled for

Jan 27, 2025, 10:00 AM

Timezone

PDT

Seminar
GMT+1

Decomposing motivation into value and salience

Humans and other animals approach reward and avoid punishment and pay attention to cues predicting these events. Such motivated behavior thus appears to be guided by value, which directs behavior towards or away from positively or negatively valenced outcomes. Moreover, it is facilitated by (top-down) salience, which enhances attention to behaviorally relevant learned cues predicting the occurrence of valenced outcomes. Using human neuroimaging, we recently separated value (ventral striatum, posterior ventromedial prefrontal cortex) from salience (anterior ventromedial cortex, occipital cortex) in the domain of liquid reward and punishment. Moreover, we investigated potential drivers of learned salience: the probability and uncertainty with which valenced and non-valenced outcomes occur. We find that the brain dissociates valenced from non-valenced probability and uncertainty, which indicates that reinforcement matters for the brain, in addition to information provided by probability and uncertainty alone, regardless of valence. Finally, we assessed learning signals (unsigned prediction errors) that may underpin the acquisition of salience. Particularly the insula appears to be central for this function, encoding a subjective salience prediction error, similarly at the time of positively and negatively valenced outcomes. However, it appears to employ domain-specific time constants, leading to stronger salience signals in the aversive than the appetitive domain at the time of cues. These findings explain why previous research associated the insula with both valence-independent salience processing and with preferential encoding of the aversive domain. More generally, the distinction of value and salience appears to provide a useful framework for capturing the neural basis of motivated behavior.

Speaker

Philippe Tobler • University of Zurich

Scheduled for

Oct 31, 2024, 12:15 PM

Timezone

GMT+1

Seminar
GMT+11

Localisation of Seizure Onset Zone in Epilepsy Using Time Series Analysis of Intracranial Data

There are over 30 million people with drug-resistant epilepsy worldwide. When neuroimaging and non-invasive neural recordings fail to localise seizure onset zones (SOZ), intracranial recordings become the best chance for localisation and seizure-freedom in those patients. However, intracranial neural activities remain hard to visually discriminate across recording channels, which limits the success of intracranial visual investigations. In this presentation, I present methods which quantify intracranial neural time series and combine them with explainable machine learning algorithms to localise the SOZ in the epileptic brain. I present the potentials and limitations of our methods in the localisation of SOZ in epilepsy providing insights for future research in this area.

Speaker

Hamid Karimi-Rouzbahani • The University of Queensland

Scheduled for

Oct 10, 2024, 12:15 PM

Timezone

GMT+11

Seminar
GMT-3

Toward globally accessible neuroimaging: Building the OSI2ONE MRI Scanner in Paraguay

The Open Source Imaging Initiative has recently released a fully open source low field MRI scanner called the OSI2ONE. We are currently building this system at the Universidad Paraguayo Alemana in Asuncion, Paraguay for a neuroimaging project at a clinic in Bolivia. I will discuss the process of construction, important considerations before you build, and future work planned with this device.

Speaker

Joshua Harper • Professor of Engineering

Scheduled for

Jun 17, 2024, 1:30 PM

Timezone

GMT-3

Seminar
GMT+1

Navigating semantic spaces: recycling the brain GPS for higher-level cognition

Humans share with other animals a complex neuronal machinery that evolved to support navigation in the physical space and that supports wayfinding and path integration. In my talk I will present a series of recent neuroimaging studies in humans performed in my Lab aimed at investigating the idea that this same neural navigation system (the “brain GPS”) is also used to organize and navigate concepts and memories, and that abstract and spatial representations rely on a common neural fabric. I will argue that this might represent a novel example of “cortical recycling”, where the neuronal machinery that primarily evolved, in lower level animals, to represent relationships between spatial locations and navigate space, in humans are reused to encode relationships between concepts in an internal abstract representational space of meaning.

Speaker

Manuela Piazza • University of Trento, Italy

Scheduled for

May 27, 2024, 12:15 PM

Timezone

GMT+1

Seminar
GMT+2

Characterizing the causal role of large-scale network interactions in supporting complex cognition

Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.

Speaker

Michal Ramot • Weizmann Inst. of Science

Scheduled for

May 6, 2024, 3:00 PM

Timezone

GMT+2

Seminar
GMT

Combined electrophysiological and optical recording of multi-scale neural circuit dynamics

This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.

Speaker

Chris Lewis • University of Zurich

Scheduled for

Apr 29, 2024, 3:00 PM

Timezone

GMT

Seminar
GMT+1

Executive functions in the brain of deaf individuals – sensory and language effects

Executive functions are cognitive processes that allow us to plan, monitor and execute our goals. Using fMRI, we investigated how early deafness influences crossmodal plasticity and the organisation of executive functions in the adult human brain. Results from a range of visual executive function tasks (working memory, task switching, planning, inhibition) show that deaf individuals specifically recruit superior temporal “auditory” regions during task switching. Neural activity in auditory regions predicts behavioural performance during task switching in deaf individuals, highlighting the functional relevance of the observed cortical reorganisation. Furthermore, language grammatical skills were correlated with the level of activation and functional connectivity of fronto-parietal networks. Together, these findings show the interplay between sensory and language experience in the organisation of executive processing in the brain.

Speaker

Velia Cardin • UCL

Scheduled for

Mar 20, 2024, 4:00 PM

Timezone

GMT+1

Seminar
GMT+1

Epileptic micronetworks and their clinical relevance

A core aspect of clinical epileptology revolves around relating epileptic field potentials to underlying neural sources (e.g. an “epileptogenic focus”). Yet still, how neural population activity relates to epileptic field potentials and ultimately clinical phenomenology, remains far from being understood. After a brief overview on this topic, this seminar will focus on unpublished work, with an emphasis on seizure-related focal spreading depression. The presented results will include hippocampal and neocortical chronic in vivo two-photon population imaging and local field potential recordings of epileptic micronetworks in mice, in the context of viral encephalitis or optogenetic stimulation. The findings are corroborated by invasive depth electrode recordings (macroelectrodes and BF microwires) in epilepsy patients during pre-surgical evaluation. The presented work carries general implications for clinical epileptology, and basic epilepsy research.

Speaker

Michael Wenzel • Bonn University

Scheduled for

Mar 12, 2024, 6:00 PM

Timezone

GMT+1

Seminar
GMT+1

Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine

Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.

Speaker

Nelson Spruston • Janelia, Ashburn, USA

Scheduled for

Mar 5, 2024, 4:00 PM

Timezone

GMT+1

Seminar
GMT+1

Blood-brain barrier dysfunction in epilepsy: Time for translation

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

Speaker

Alon Friedman • Dalhousie University

Scheduled for

Feb 27, 2024, 6:00 PM

Timezone

GMT+1

Seminar
GMT+11

Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions

Understanding how macroscale brain dynamics are shaped by microscale mechanisms is crucial in neuroscience. We investigate this relationship in animal models by directly manipulating cellular properties and measuring whole-brain responses using resting-state fMRI. Specifically, we explore the impact of chemogenetically neuromodulating D1 medium spiny neurons in the dorsomedial caudate putamen (CPdm) on BOLD dynamics within a striato-thalamo-cortical circuit in mice. Our findings indicate that CPdm neuromodulation alters BOLD dynamics in thalamic subregions projecting to the dorsomedial striatum, influencing both local and inter-regional connectivity in cortical areas. This study contributes to understanding structure–function relationships in shaping inter-regional communication between subcortical and cortical levels.

Speaker

Marija Markicevic • Yale

Scheduled for

Jan 18, 2024, 10:00 AM

Timezone

GMT+11

Seminar
EDT

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: Brain-optimized inference improves reconstructions of fMRI brain activity Abstract: The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas. Speaker: Reese Kneeland is a Ph.D. student at the University of Minnesota working in the Naselaris lab. Paper link: https://arxiv.org/abs/2312.07705

Speaker

Reese Kneeland

Scheduled for

Jan 4, 2024, 11:00 AM

Timezone

EDT

Seminar
GMT+1

Imaging the subcortex; Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders

We are very much looking forward to host Francisca Ferreira and Birte Forstmann on December 14th, 2023, at noon ET / 6PM CET. Francisca Ferreira is a PhD student and Neurosurgery trainee at the University College of London Queen Square Institute of Neurology and a Royal College of Surgeons “Emerging Leaders” program laureate. Her presentation title will be: “Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders”. Birte Forstmann, PhD, is the Director of the Amsterdam Brain and Cognition Center, a Professor of Cognitive Neuroscience at the University of Amsterdam, and a Professor by Special Appointment of Neuroscientific Testing of Psychological Models at the University of Leiden. Besides her scientific presentation (“Imaging the human subcortex”), she will give us a glimpse at the “Person behind the science”. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

Speaker

Birte Forstmann, PhD & Francisca Ferreira, PhD • University of Amsterdam, Netherlands / University College London, UK

Scheduled for

Dec 13, 2023, 6:00 PM

Timezone

GMT+1