Events
Open full Events browserLoading...
Live and recorded talks from the researchers shaping this domain.
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
Speaker
Juan P. Bolanos • Professor of Biochemistry and Molecular Biology, University of Salamanca
Scheduled for
Oct 2, 2025, 10:30 AM
Timezone
GMT+2
How the presynapse forms and functions”
Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) that supply presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is largely unknown. I will discuss our recent advances in our understanding of how key components of the presynaptic machinery for neurotransmitter release are transported and assembled focussing on our studies in genome-engineered human induced pluripotent stem cell-derived neurons. Specifically, I will focus on the composition and cell biological identity of the axonal transport vesicles that shuttle key components of neurotransmission to nascent synapses and on machinery for axonal transport and its control by signaling lipids. Our studies identify a crucial mechanism mediating the delivery of SV and active zone proteins to developing synapses and reveal connections to neurological disorders. In the second part of my talk, I will discuss how exocytosis and endocytosis are coupled to maintain presynaptic membrane homeostasis. I will present unpublished data regarding the role of membrane tension in the coupling of exocytosis and endocytosis at synapses. We have identified an endocytic BAR domain protein that is capable of sensing alterations in membrane tension caused by the exocytotic fusion of SVs to initiate compensatory endocytosis to restore plasma membrane area. Interference with this mechanism results in defects in the coupling of presynaptic exocytosis and SV recycling at human synapses.
Speaker
Volker Haucke • Department of Molecular Pharmacology & Cell Biology, Leibniz Institute, Berlin, Germany
Scheduled for
Aug 27, 2025, 12:15 PM
Timezone
GMT+1
Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma
Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.
Speaker
Ioannis Charalampopoulos • Professor of Pharmacology, Medical School, University of Crete & Affiliated Researcher, Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH)
Scheduled for
Mar 6, 2025, 1:30 PM
Timezone
GMT+2
CNS Control of Peripheral Mitochondrial Form and Function: Mitokines
My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.
Speaker
Andy Dillin • University of California, Berkeley
Scheduled for
Jan 27, 2025, 10:30 AM
Timezone
EDT
Personalized medicine and predictive health and wellness: Adding the chemical component
Wearable sensors that detect and quantify biomarkers in retrievable biofluids (e.g., interstitial fluid, sweat, tears) provide information on human dynamic physiological and psychological states. This information can transform health and wellness by providing actionable feedback. Due to outdated and insufficiently sensitive technologies, current on-body sensing systems have capabilities limited to pH, and a few high-concentration electrolytes, metabolites, and nutrients. As such, wearable sensing systems cannot detect key low-concentration biomarkers indicative of stress, inflammation, metabolic, and reproductive status. We are revolutionizing sensing. Our electronic biosensors detect virtually any signaling molecule or metabolite at ultra-low levels. We have monitored serotonin, dopamine, cortisol, phenylalanine, estradiol, progesterone, and glucose in blood, sweat, interstitial fluid, and tears. The sensors are based on modern nanoscale semiconductor transistors that are straightforwardly scalable for manufacturing. We are developing sensors for >40 biomarkers for personalized continuous monitoring (e.g., smartwatch, wearable patch) that will provide feedback for treating chronic health conditions (e.g., perimenopause, stress disorders, phenylketonuria). Moreover, our sensors will enable female fertility monitoring and the adoption of more healthy lifestyles to prevent disease and improve physical and cognitive performance.
Speaker
Anne Andrews • University of California
Scheduled for
Jul 8, 2024, 12:15 PM
Timezone
GMT+1
Mitochondrial diversity in the mouse and human brain
The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.
Speaker
Martin Picard • Columbia University, New York, USA
Scheduled for
Apr 16, 2024, 12:15 PM
Timezone
GMT+1
Astrocyte reprogramming / activation and brain homeostasis
Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.
Speaker
Thomaidou Dimitra • Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Scheduled for
Dec 12, 2023, 1:00 PM
Timezone
GMT+2
Metabolic Remodelling in the Developing Forebrain in Health and Disease
Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.
Speaker
Gaia Novarino • Institute of Science and Technology Austria
Scheduled for
Oct 30, 2023, 4:00 PM
Timezone
GMT
Epigenomic (re)programming of the brain and behavior by ovarian hormones
Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.
Speaker
Marija Kundakovic • Fordham University
Scheduled for
May 1, 2023, 4:00 PM
Timezone
GMT
Uncovering the molecular effectors of diet and exercise
Despite the profound effects of nutrition and physical activity on human health, our understanding of the molecules mediating the salutary effects of specific foods or activities remains remarkably limited. Here, we share our ongoing studies that use unbiased and high-resolution metabolomics technologies to uncover the molecules and molecular effectors of diet and exercise. We describe how exercise stimulates the production of Lac-Phe, a blood-borne signaling metabolite that suppresses feeding and obesity. Ablation of Lac-Phe biosynthesis in mice increases food intake and obesity after exercise. We also describe the discovery of an orphan metabolite, BHB-Phe. Ketosis-inducible BHB-Phe is a congener of exercise-inducible Lac-Phe, produced in CNDP2+ cells when levels of BHB are high, and functions to lower body weight and adiposity in ketosis. Our data uncover an unexpected and underappreciated signaling role for metabolic fuel derivatives in mediating the cardiometabolic benefits of diet and exercise. These data also suggest that diet and exercise may mediate their physiologic effects on energy balance via a common family of molecules and overlapping signaling pathways.
Speaker
Jonathan Long • Stanford University
Scheduled for
Mar 27, 2023, 4:00 PM
Timezone
GMT
Private oxytocin supply and its receptors in the hypothalamus for social avoidance learning
Many animals live in complex social groups. To survive, it is essential to know who to avoid and who to interact. Although naïve mice are naturally attracted to any adult conspecifics, a single defeat experience could elicit social avoidance towards the aggressor for days. The neural mechanisms underlying the behavior switch from social approach to social avoidance remains incompletely understood. Here, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin receptor (OXTR) expressing cells in the anterior subdivision of ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance learning. After defeat, aVMHvlOXTR cells drastically increase their responses to aggressor cues. This response change is functionally important as optogenetic activation of aVMHvlOXTR cells elicits time-locked social avoidance towards a benign social target whereas inactivating the cells suppresses defeat-induced social avoidance. Furthermore, OXTR in the aVMHvl is itself essential for the behavior change. Knocking out OXTR in the aVMHvl or antagonizing the receptor during defeat, but not during post-defeat social interaction, impairs defeat-induced social avoidance. aVMHvlOXTR receives its private supply of oxytocin from SOROXT cells. SOROXT is highly activated by the noxious somatosensory inputs associated with defeat. Oxytocin released from SOROXT depolarizes aVMHvlOXTR cells and facilitates their synaptic potentiation, and hence, increases aVMHvlOXTR cell responses to aggressor cues. Ablating SOROXT cells impairs defeat-induced social avoidance learning whereas activating the cells promotes social avoidance after a subthreshold defeat experience. Altogether, our study reveals an essential role of SOROXT-aVMHvlOXTR circuit in defeat-induced social learning and highlights the importance of hypothalamic oxytocin system in social ranking and its plasticity.
Speaker
Takuya Osakada • NYU
Scheduled for
Jan 30, 2023, 12:00 PM
Timezone
EDT
Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy
Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispecic antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents inuence the coordination mode. Target-specic radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.
Speaker
Manja Kubeil • Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden- Rossendorf (HDZR), Germany
Scheduled for
Oct 11, 2022, 12:30 PM
Timezone
GMT+11
Redox and mitochondrial dysregulation in epilepsy
Epileptic seizures render the brain uniquely dependent on energy producing pathways. Studies in our laboratory have been focused on the role of redox processes and mitochondria in the context of abnormal neuronal excitability associated with epilepsy. We have shown that that status epilepticus (SE) alters mitochondrial and cellular redox status, energetics and function and conversely, that reactive oxygen species and resultant dysfunction can lead to chronic epilepsy. Oxidative stress and neuroinflammatory pathways have considerable crosstalk and targeting redox processes has recently been shown to control neuroinflammation and excitability. Understanding the role of metabolic and redox processes can enable the development of novel therapeutics to control epilepsy and/or its comorbidities.
Speaker
Manisha Patel • University of Colorado
Scheduled for
Sep 20, 2022, 6:00 PM
Timezone
GMT+1
Brain-muscle signaling coordinates exercise adaptations in Drosophila
Chronic exercise is a powerful intervention that lowers the incidence of most age-related diseases while promoting healthy metabolism in humans. However, illness, injury or age prevent many humans from consistently exercising. Thus, identification of molecular targets that can mimic the benefits of exercise would be a valuable tool to improve health outcomes of humans with neurodegenerative or mitochondrial diseases, or those with enforced sedentary lifestyles. Using a novel exercise platform for Drosophila, we have identified octopaminergic neurons as a key subset of neurons that are critical for the exercise response, and shown that periodic daily stimulation of these neurons can induce a systemic exercise response in sedentary flies. Octopamine is released into circulation where it signals through various octopamine receptors in target tissues and induces gene expression changes similar to exercise. In particular, we have identified several key molecules that respond to octopamine in skeletal muscle, including the mTOR modulator Sestrin, the PGC-1α homolog Spargel, and the FNDC5/Irisin homolog Iditarod. We are currently testing these molecules as potential therapies for multiple diseases that reduce mobility, including the PolyQ disease SCA2 and the mitochondrial disease Barth syndrome.
Speaker
Robert Wessells • Wayne State University
Scheduled for
Sep 19, 2022, 4:00 PM
Timezone
GMT
Active mechanics of sea star oocytes
The cytoskeleton has the remarkable ability to self-organize into active materials which underlie diverse cellular processes ranging from motility to cell division. Actomyosin is a canonical example of an active material, which generates cellularscale contractility in part through the forces exerted by myosin motors on actin filaments. While the molecular players underlying actomyosin contractility have been well characterized, how cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions is not well understood. In this talk, I’ll present work done in collaboration with Sebastian Fürthauer and Nikta Fakhri addressing this question in vivo using the meiotic surface contraction wave seen in oocytes of the bat star Patiria miniata as a model system. By perturbing actin polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical actin density peaked near the wild type density. To understand this, we develop an active fluid model coarse-grained from filament-scale interactions and find quantitative agreement with the measured data. The model makes further predictions, including the surprising prediction that deformation rate decreases with increasing motor concentration. We test these predictions through protein overexpression and find quantitative agreement. Taken together, this work is an important step for bridging the molecular and cellular length scales for cytoskeletal networks in vivo.
Speaker
Peter Foster • Brandeis University
Scheduled for
Jul 17, 2022, 9:00 AM
Timezone
PDT
Translation at the Synapse
The complex morphology of neurons, with synapses located hundreds of microns from the cell body, necessitates the localization of important cell biological machines, including ribosomes, within dendrites and axons. Local translation of mRNAs is important for the function and plasticity of synapses. Using advanced sequencing and imaging techniques we have updated our understanding of the local transcriptome and identified the local translatome- identifying over 800 transcripts for which local translation is the dominant source of protein. In addition, we have explored the unique mechanisms neurons use to meet protein demands at synapses, identifying surprising features of neuronal and synaptic protein synthesis.
Speaker
Erin Schuman • Max Planck Institute for Brain Research, Germany
Scheduled for
May 31, 2022, 4:00 PM
Timezone
GMT+1
Molecular Logic of Synapse Organization and Plasticity
Connections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.
Speaker
Tabrez Siddiqui • University of Manitoba
Scheduled for
May 30, 2022, 4:00 PM
Timezone
EDT
Malignant synaptic plasticity in pediatric high-grade gliomas
Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.
Speaker
Kathryn Taylor • Stanford
Scheduled for
May 24, 2022, 12:00 PM
Timezone
EDT
How do protein-RNA condensates form and contribute to disease?
In recent years, it has become clear that intrinsically disordered regions (IDRs) of RBPs, and the structure of RNAs, often contribute to the condensation of RNPs. To understand the transcriptomic features of such RNP condensates, we’ve used an improved individual nucleotide resolution CLIP protocol (iiCLIP), which produces highly sensitive and specific data, and thus enables quantitative comparisons of interactions across conditions (Lee et al., 2021). This showed how the IDR-dependent condensation properties of TDP-43 specify its RNA binding and regulatory repertoire (Hallegger et al., 2021). Moreover, we developed software for discovery and visualisation of RNA binding motifs that uncovered common binding patterns of RBPs on long multivalent RNA regions that are composed of dispersed motif clusters (Kuret et al, 2021). Finally, we used hybrid iCLIP (hiCLIP) to characterise the RNA structures mediating the assembly of Staufen RNPs across mammalian brain development, which demonstrated the roles of long-range RNA duplexes in the compaction of long 3’UTRs. I will present how the combined analysis of the characteristics of IDRs in RBPs, multivalent RNA regions and RNA structures is required to understand the formation and functions of RNP condensates, and how they change in diseases.
Speaker
Jernej Ule • UK Dementia Research Institute
Scheduled for
May 5, 2022, 1:00 PM
Timezone
GMT
MBI Webinar on preclinical research into brain tumours and neurodegenerative disorders
WEBINAR 1 Breaking the barrier: Using focused ultrasound for the development of targeted therapies for brain tumours presented by Dr Ekaterina (Caty) Salimova, Monash Biomedical Imaging Glioblastoma multiforme (GBM) - brain cancer - is aggressive and difficult to treat as systemic therapies are hindered by the blood-brain barrier (BBB). Focused ultrasound (FUS) - a non-invasive technique that can induce targeted temporary disruption of the BBB – is a promising tool to improve GBM treatments. In this webinar, Dr Ekaterina Salimova will discuss the MRI-guided FUS modality at MBI and her research to develop novel targeted therapies for brain tumours. Dr Ekaterina (Caty) Salimova is a Research Fellow in the Preclinical Team at Monash Biomedical Imaging. Her research interests include imaging cardiovascular disease and MRI-guided focused ultrasound for investigating new therapeutic targets in neuro-oncology. - WEBINAR 2 Disposition of the Kv1.3 inhibitory peptide HsTX1[R14A], a novel attenuator of neuroinflammation presented by Sanjeevini Babu Reddiar, Monash Institute of Pharmaceutical Sciences The voltage-gated potassium channel (Kv1.3) in microglia regulates membrane potential and pro-inflammatory functions, and non-selective blockade of Kv1.3 has shown anti-inflammatory and disease improvement in animal models of Alzheimer’s and Parkinson’s diseases. Therefore, specific inhibitors of pro-inflammatory microglial processes with CNS bioavailability are urgently needed, as disease-modifying treatments for neurodegenerative disorders are lacking. In this webinar, PhD candidate Ms Sanju Reddiar will discuss the synthesis and biodistribution of a Kv1.3-inhibitory peptide using a [64Cu]Cu-DOTA labelled conjugate. Sanjeevini Babu Reddiar is a PhD student at the Monash Institute of Pharmaceutical Sciences. She is working on a project identifying the factors governing the brain disposition and blood-brain barrier permeability of a Kv1.3-blocking peptide.
Speaker
Ekaterina (Caty) Salimova and Ms Sanjeevini Babu Reddiar
Scheduled for
Apr 12, 2022, 12:30 PM
Timezone
GMT+11