Cerebellum
cerebellum
Latest
Low intensity rTMS: age dependent effects, and mechanisms underlying neural plasticity
Neuroplasticity is essential for the establishment and strengthening of neural circuits. Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical excitability and shows promise in the treatment of some neurological disorders. Low intensity magnetic stimulation (LI-rTMS), which does not directly elicit action potentials in the stimulated neurons, have also shown some therapeutic effects, and it is important to determine the biological mechanisms underlying the effects of these low intensity magnetic fields, such as would occur in the regions surrounding the central high-intensity focus of rTMS. Our team has used a focal low-intensity (10mT) magnetic stimulation approach to address some of these questions and to identify cellular mechanisms. I will present several studies from our laboratory, addressing (1) effects of LIrTMS on neuronal activity and excitability ; and (2) neuronal morphology and post-lesion repair. The ensemble of our results indicate that the effects of LI-rTMS depend upon the stimulation pattern, the age of the animal, and the presence of cellular magnetoreceptors.
Understanding the complex behaviors of the ‘simple’ cerebellar circuit
Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.
Cerebellum-Basal Ganglia Interactions
Expanding the role of MAST kinases in brain development and epilepsy: identification of de novo pathogenic variants in MAST4
Sampling the environment with body-brain rhythms
Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?
Searching for the algorithms of iterative motor learning involving the cerebellum
CNStalk: Involvement of the cerebellum in motor and emotional learning
Tree of life: The cerebellum in anger and aggression
Potential pathways for novel interventions in TLE
Inhibition of seizures can come from expected – and surprising – sources. In this talk I will explore circuit elements, both within and external to the temporal lobe, which may be able inhibit hippocampal seizures, and how specific aspects of intervention strategies can be critical for outcomes. We’ll discuss novel sources of inhibition within the hippocampus, the cerebellum as a potential target, and closed-loop optimization of stimulation parameters
Visualising time in the human brain
We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.
Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2
Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.
Population coding in the cerebellum: a machine learning perspective
The cerebellum resembles a feedforward, three-layer network of neurons in which the “hidden layer” consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.
Visualization and manipulation of our perception and imagery by BCI
We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.
Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain
Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.
Chapter 3. The origin of jaws and paired fin
Leonard Maler will focus on a specialized caudal portion of the cerebellum of teleost fish whose structure and physiology has been especially well studies to the point that we now have detailed computational analyses of its function. Idoia Quintana-Urzainqui will talk about what sharks can tell us about the evolution of the telencephalon, mainly focusing on the evolutionary expansion of the pallium and how shark embryos can hold key information to interpret the origin of the developmental processes that triggered this phenomenon.
Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models
To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.
Neural Population Dynamics for Skilled Motor Control
The ability to reach, grasp, and manipulate objects is a remarkable expression of motor skill, and the loss of this ability in injury, stroke, or disease can be devastating. These behaviors are controlled by the coordinated activity of tens of millions of neurons distributed across many CNS regions, including the primary motor cortex. While many studies have characterized the activity of single cortical neurons during reaching, the principles governing the dynamics of large, distributed neural populations remain largely unknown. Recent work in primates has suggested that during the execution of reaching, motor cortex may autonomously generate the neural pattern controlling the movement, much like the spinal central pattern generator for locomotion. In this seminar, I will describe recent work that tests this hypothesis using large-scale neural recording, high-resolution behavioral measurements, dynamical systems approaches to data analysis, and optogenetic perturbations in mice. We find, by contrast, that motor cortex requires strong, continuous, and time-varying thalamic input to generate the neural pattern driving reaching. In a second line of work, we demonstrate that the cortico-cerebellar loop is not critical for driving the arm towards the target, but instead fine-tunes movement parameters to enable precise and accurate behavior. Finally, I will describe my future plans to apply these experimental and analytical approaches to the adaptive control of locomotion in complex environments.
Bidirectionally connected cores in a mouse connectome: Towards extracting the brain subnetworks essential for consciousness
Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network. We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted of regions presumably essential to consciousness (e.g., the isocortical and thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g., cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we applied other simple methods which ignored bidirectionality. These findings suggest that our method provides a novel insight into the relation between bidirectional brain network structures and consciousness. Our recent preprint on this work is here: https://doi.org/10.1101/2021.07.12.452022.
Cholinergic modulation of the cerebellum
Many studies have investigated the major glutamatergic inputs to the cerebellum, mossy fibres and climbing fibres, however far less is known about its neuromodulatory inputs. In particular, anatomical studies have described cholinergic input to the cerebellum, yet little is known about its role(s). In this talk, I will present our recent findings which demonstrate that manipulating acetylcholine receptors in the cerebellum causes effects at both a cellular and behavioural level. Activating acetylcholine receptors alters the intrinsic properties and synaptic inputs of cerebellar output neurons, and blocking these receptors results in deficits in a range of behavioural tasks.
Synchrony and Synaptic Signaling in Cerebellar Circuits
The cerebellum permits a wide range of behaviors that involve sensorimotor integration. We have been investigating how specific cellular and synaptic specializations of cerebellar neurons measured in vitro, give rise to circuit activity in vivo. We have investigated these issues by studying Purkinje neurons as well as the large neurons of the mouse cerebellar nuclei, which form the major excitatory premotor projection from the cerebellum. Large CbN cells have ion channels that favor spontaneous action potential firing and GABAA receptors that generate ultra-fast inhibitory synaptic currents, raising the possibility that these biophysical attributes may permit CbN cells to respond differently to the degree of temporal coherence of their Purkinje cell inputs. In vivo, self-initiated motor programs associated with whisking correlates with asynchronous changes in Purkinje cell simple spiking that are asynchronous across the population. The resulting inhibition converges with mossy fiber excitation to yield little change in CbN cell firing, such that cerebellar output is low or cancelled. In contrast, externally applied sensory stimuli elicits a transient, synchronous inhibition of Purkinje cell simple spiking. During the resulting strong disinhibition of CbN cells, sensory-induced excitation from mossy fibers effectively drives cerebellar outputs that increase the magnitude of reflexive whisking. Purkinje cell synchrony, therefore, may be a key variable contributing to the “positive effort” hypothesized by David Marr in 1969 to be necessary for cerebellar control of movement.
Sparse expansion in cerebellum favours learning speed and performance in the context of motor control
The cerebellum contains more than half of the brain’s neurons and it is essential for motor control. Its neural circuits have a distinctive architecture comprised of a large, sparse expansion from the input mossy fibres to the granule cell layer. For years, theories of how cerebellar architectural features relate to cerebellar function have been formulated. It has been shown that some of these features can facilitate pattern separation. However, these theories don’t consider the need for it to learn fast in order to control smooth and accurate movements. Here, we confront this gap. This talk will show that the expansion to the granule cell layer in the cerebellar cortex improves learning speed and performance in the context of motor control by considering a cerebellar-like network learning an internal model of a motor apparatus online. By expressing the general form of the learning rate for such a system, this talk will provide a calculation of how increasing the number of granule cells diminishes the effect of noise and increases the learning speed. The researchers propose that the particular architecture of cerebellar circuits modifies the geometry of the error function in a favourable way for learning faster. Their results illuminate a new link between cerebellar structure and function.
Sensory-motor control, cognition and brain evolution: exploring the links
Drawing on recent findings from evolutionary anthropology and neuroscience, professor Barton will lead us through the amazing story of the evolution of human cognition. Usingstatistical, phylogenetic analyses that tease apart the variation associated with different neural systems and due to different selection pressures, he will be addressing intriguing questions like ‘Why are there so many neurons in the cerebellum?’, ‘Is the neocortex the ‘intelligent’ bit of the brain?’, and ‘What explains that the recognition by humans of emotional expressions is disrupted by trancranial magnetic stimulation of the somatosensory cortex?’ Could, as professor Barton suggests, the cerebellum -modestly concealed beneath the volumetrically dominating neocortex and largely ignored- turn out to be the Cinderella of the study of brain evolution?
Generalizing theories of cerebellum-like learning
Since the theories of Marr, Ito, and Albus, the cerebellum has provided an attractive well-characterized model system to investigate biological mechanisms of learning. In recent years, theories have been developed that provide a normative account for many features of the anatomy and function of cerebellar cortex and cerebellum-like systems, including the distribution of parallel fiber-Purkinje cell synaptic weights, the expansion in neuron number of the granule cell layer and their synaptic in-degree, and sparse coding by granule cells. Typically, these theories focus on the learning of random mappings between uncorrelated inputs and binary outputs, an assumption that may be reasonable for certain forms of associative conditioning but is also quite far from accounting for the important role the cerebellum plays in the control of smooth movements. I will discuss in-progress work with Marjorie Xie, Samuel Muscinelli, and Kameron Decker Harris generalizing these learning theories to correlated inputs and general classes of smooth input-output mappings. Our studies build on earlier work in theoretical neuroscience as well as recent advances in the kernel theory of wide neural networks. They illuminate the role of pre-expansion structures in processing input stimuli and the significance of sparse granule cell activity. If there is time, I will also discuss preliminary work with Jack Lindsey extending these theories beyond cerebellum-like structures to recurrent networks.
Recurrent problems in spinal-cord and cerebellar circuits
One of the best established recurrent inhibitory pathways is the recurrent inhibition of mammalian motoneurons through Renshaw cells. Golgi cells form an inhibitory feedback circuit in the granular layer of cerebellum. Feedback inhibitory pathways are long established “textbook” elements of neural circuitry, but in both cases their functional role has not been well established. Here I will present some new observations on the function of recurrent inhibition in the spinal-cord, supporting the idea that this connection frequency tunes transmission of inputs through motoneurons. Secondly, I will discuss evidence that the function of Golgi cells is much more complex than classical studies based on circuit connectivity suggest.
To & From: Hippobellum & LINCs
The hippocampus is a well-studied structure, important for spatial navigation, learning, and memory. The hippocampus, however, still contains secrets and does not work in a vacuum. LINCs are a novel form of long-range inhibitory neuron in the hippocampus, which may be important for coordinating activity between the hippocampus and downstream structures. The cerebellum, while classically viewed as a motor structure, is being increasingly recognized for its impact on cognitive domains. Recent work has demonstrated that the cerebellum can influence the hippocampus, including place cells.
Multi-layer network learning in an electric fish
The electrosensory lobe (ELL) in mormyrid electric fish is a cerebellar-like structure that cancels the sensory effects of self-generated electric fields, allowing prey to be detected. Like the cerebellum, the ELL involves two stages of processing, analogous to the Purkinje cells and cells of the deep cerebellar nuclei. Through the work of Curtis Bell and others, a model was previously developed to describe the output stage of the ELL, but the role of the Purkinje-cell analogs, the medium ganglion (MG) cells, in the circuit had remained mysterious. I will present a complete, multi-layer circuit description of the ELL, developed in collaboration with Nate Sawtell and Salomon Muller, that reveals a novel role for the MG cells. The resulting model provides an example of how a biological system solves well-known problems associated with learning in multi-layer networks, and it reveals that ELL circuitry is organization on the basis of learning rather than by the response properties of neurons.
cerebellum coverage
26 items