Mathematics
Mathematics
Latest
Yashar Ahmadian
The postdoc will work on a collaborative project between the labs of Yashar Ahmadian at the Computational and Biological Learning Lab (CBL), and Zoe Kourtzi at the Psychology Department, both at the University of Cambridge. The project investigates the computational principles and circuit mechanisms underlying human visual perceptual learning, particularly the role of adaptive changes in the balance of cortical excitation and inhibition resulting from perceptual learning. The postdoc will be based in CBL, with free access to the Kourtzi lab in the Psychology department.
N/A
IIT welcomes applicants with an outstanding track-record in Computational Neuroscience. Appropriate research areas include computational and modelling approaches for understanding the function of the nervous system. Investigators with expertise in mathematics, physics, statistics, and machine learning for neuroscience are also encouraged to apply. The position can be either tenured or tenure-track, depending on seniority and expertise. If tenure-track, the position is for an initial period of 5 years with renewal depending on evaluation. We provide generous support for salary, start-up budget, and annual running costs.
Vinita Samarasinghe
The position is part of the Collaborative Research Center “Extinction Learning” (SFB 1280) and studies the principles underlying spatial learning and its extinction with reinforcement learning models. A particular focus is the role of episodic-like memory in learning and extinction processes. The research group is highly dynamic and uses diverse computational modeling approaches including biological neural networks, cognitive modeling, and machine learning to investigate learning and memory in humans and animals.
Dr. Udo Ernst
In this project we want to study organization and optimization of flexible information processing in neural networks, with specific focus on the visual system. You will use network modelling, numerical simulation, and mathematical analysis to investigate fundamental aspects of flexible computation such as task-dependent coordination of multiple brain areas for efficient information processing, as well as the emergence of flexible circuits originating from learning schemes which simultaneously optimize for function and flexibility. These studies will be complemented by biophysically realistic modelling and data analysis in collaboration with experimental work done in the lab of Prof. Dr. Andreas Kreiter, also at the University of Bremen. Here we will investigate selective attention as a central aspect of flexibility in the visual system, involving task-dependent coordination of multiple visual areas.
Mathematics coverage
4 items